Properties of guided waves propagating in honeycomb sandwich plates and the detection of disbonding damage using ultrasonic waves

PENG Bo,SHUI Guoshuang,WANG Yuesheng

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (12) : 140-147.

PDF(1478 KB)
PDF(1478 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (12) : 140-147.

Properties of guided waves propagating in honeycomb sandwich plates and the detection of disbonding damage using ultrasonic waves

  • PENG Bo,SHUI Guoshuang,WANG Yuesheng
Author information +
History +

Abstract

Properties of guided waves propagation in honeycomb sandwich plates were studied based on a finite element model, and a experimental study on detection of disbonding damage within the honeycomb sandwich structure was conducted by using ultrasonic waves.A finite element model was employed based on an actual honeycomb sandwich plate structure, and the propagations of guided waves both in perfect and damaged structure were simulated using the commercial software COMSOL Multiphysics.In the experimental study, piezoelectric wafers were used to excite the guided waves, and the waves were acquired using a Polytec Scanning Vibrometer.It was shown that the guided waves possess the features of dispersion and multi-modes; A0 mode is sensitive to the disbonding damage in the honeycomb sandwich structure, and the experimental result agrees well with the simulation.Furthermore, disbonding damage was located based on wavelet transform and damage probability imaging.

Key words

honeycomb sandwich plate / ultrasonic guided waves / disbonding damage / wavelet transform / damage probability imaging

Cite this article

Download Citations
PENG Bo,SHUI Guoshuang,WANG Yuesheng. Properties of guided waves propagating in honeycomb sandwich plates and the detection of disbonding damage using ultrasonic waves[J]. Journal of Vibration and Shock, 2019, 38(12): 140-147

References

[1] Fatemi J, Lemmen M. Effective Thermal/Mechanical Properties of Honeycomb Core Panels for Hot Structure Applications [J]. Journal of Spacecraft & Rockets, 1971, 46(3): 514-525.
[2] 韩会龙, 张新春. 星形节点周期性蜂窝结构的面内动力学响应特性研究 [J]. 振动与冲击, 2017, 36(23): 223-231.
Han Hui-long, Zhang Xin-chun. In-plane dynamic impact response characteristics of periodic 4-point star-shaped honeycomb structures [J]. Journal of Vibration and Shock, 2017, 36(23): 223-231.
[3] 罗斯. 固体中的超声波 [M]. 何存富. 北京: 科学出版社, 2004.
Rose. Ultrasonic waves in solid media [M]. He Cun-fu. Beijing: Science Press, 2004.
[4] Song F, Huang GL, Hudson K. Guided wave propagation in honeycomb sandwich structures using a piezoelectric actuator/sensor system [J]. Smart Materials & Structures, 2009, 52(18): 1-8.
[5] Mustapha S, Ye L. Leaky and non-leaky behaviours of guided waves in CF/EP sandwich structures [J]. Wave Motion, 2014, 51(6): 905-918.
[6] Hay TR, Wei L, Rose JL, et al. Rapid inspection of composite skin-honeycomb core structures with ultrasonic guided waves [J]. Journal of Composite Materials, 2003, 37(10): 929-939.
[7] 章令晖, 韩宇, 沃西源, 等. 蜂窝夹层结构常见制造缺陷分析 [J]. 航天返回与遥感, 2006, 27(1):  57-61.
Zhang Ling-hui, Han Yu, Wo Xi-yuan, et al. Analysis on process defects of honey comb sandwich [J]. Spacecraft Recovery & Remote Sensing, 2006, 27(1): 57-61.
[8] 李慧娟, 吴东流, 王俊涛, 等. 铝蒙皮蜂窝夹层结构的各种无损检测方法 [J]. 无损探伤, 2009, 33(2): 9-12.
Li Hui-juan, Wu Dong-liu, Wang Jun-tao, et al. Nondestructive testings for aluminum skin honeycomb core sandwich structure [J]. NDT, 2009, 33(2): 9-12.
[9] 单威. CR射线检测技术在航空复合材料检测中的应用 [J]. 科技与创新, 2016(16): 137-137.
Shan Wei. Application of CR ray detection technology in aviation composite material [J]. Science and Technology & Innovation, 2016(16): 137-137.
[10] 温宇立, 武静, 林荣, 等. 基于相轨迹的多裂纹管道超声导波检测研究 [J]. 振动与冲击, 2017, 36(23): 114-122.
Wen Yu-li, Wu Jing, Lin Rong, et al. Multi-crack detection in pipes using ultrasonic guided wave based on phase trajectors [J]. Journal of Vibration and Shock, 2017, 36(23): 114-122.
[11] 何存富, 刘青青, 焦敬品, 等. 基于振动模态分析的钢轨中超声导波传播特性数值方法计算 [J]. 振动与冲击, 2014, 33(3): 9-13.
He Cun-fu, Liu Qing-qing, Jiao Jing-pin, et al. Propagation characteristics of ultrasonic guided wave in rails based on vibration modal analysis [J]. Journal of Vibration and Shock, 2014, 33(3): 9-13.
[12] Chakraborty N, Rathod, VT, Mahapatra DR, et al. Guided wave based detection of damage in honeycomb core sandwich structures [J]. NDT & E International, 2012, 49(7): 27-33.
[13] 冯占英, 周正干. 蜂窝结构的超声和声无损检测技术 [J]. 无损探伤, 2007, 31(6): 1-5.
Feng Zhan-ying, Zhou Zheng-gan. Ultrasonic and acoustic nondestructive testing technologies for honeycomb core sandwich structures [J]. NDT, 2007, 31(6): 1-5.
[14] Song F, Huang GL and Hu GK. Online guided wave-based debonding detection in honeycomb sandwich structures [J]. Aiaa Journal, 2012, 50(2): 284-293.
[15] Ochôa P, Infant V, Silva JM, et al. Detection of multiple low-energy impact damage in composite plates using Lamb wave techniques [J]. Composites Part B Engineering, 2015, 80: 291-298.
[16] 陶勇, 尹西岳, 樊喜刚, 等. 二维点阵夹芯板导波传播特性与频散曲线计算 [J]. 上海大学学报(自然科学版), 2014, 20(1): 43-50.
Tao Yong, Yin Xi-yue, Fan Xi-gang, et al. Propagation characteristics of guided waves in 2D Lattice sandwich plate and computation of disperse curve [J]. Journal of Shanghai University (Natural Science), 2014, 20(1): 43-50.
[17] Banerjee S, Pol CB. Theoretical modeling of guided wave propagation in a sandwich plate subjected to transient surface excitations [J]. International Journal of Solids & Structures, 2012, 49(23-24): 3233-3241.
[18] Baid H, Schaal C, Samajder, H, et al. Dispersion of Lamb waves in a honeycomb composite sandwich panel [J]. Ultrasonics, 2015, 56: 409-416.
[19] 陈勇强, 肖强, 陈亮, 等. 基于模态分析法的复合材料频散曲线特性 [J], 实验室研究与探索, 2016, 35(4): 12-16.
Chen Yong-qiang, Xiao Qiang, Chen Liang, et al. Research of dispersion curves for composites material by modal analysis method [J]. Research & Exploration in Laboratory, 2016, 35(4): 12-16.
[20] Sikdar S, Banerjee S. Identification of disbond and high density core region in a honeycomb composite sandwich structure using ultrasonic guided waves [J]. Composite Structures, 2016, 152: 568-578.
[21] Flynn EB, Swartz RA, Backman DE, et al. Active-sensing Lamb wave propagations for damage identification in honeycomb aluminum panels [J]. Journals of the Korean Society for Nondestructive Testing, 2009. 29(4): 269-282.
[22] Zhao X, Gao H, Zhang G, et al. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring [J]. Smart Materials & Structures, 2007, 16(4): 1208-1217.
[23] 李贤冰, 温激鸿, 郁殿龙, 等. 蜂窝夹层板力学等效方法对比研究 [J]. 玻璃钢/复合材料, 2012(1): 11-15.
Li Xian-bing, Wen Ji-hong, Yu Dian-long, et al. The comparative study of equivalent mechanical methods on honeycomb sandwich plate [J]. Fiber Reinforced Plastics/ Composites, 2012(1): 11-15.
[24] 吴斌, 刘飞, 何存富. 波导结构频散分析的特征频率法及在板条结构中的应用 [J]. 计算力学学报, 2013, 30(4): 514-519.
Wu Bin, Liu Fei, He Cun-fu. Analysis of dispersion characteristic eigenfrequency method for waveguides and application in plate strip [J]. Chinese Journal of Computational Mechanics, 2013, 30(4): 514-519.
[25] RS Chu, T Tamir. Wave Propagation and Dispersion in Space-time Periodic Media [J]. Proc. IEEE., 1972, 119(7): 797-806.
[26] 张林文, 马世伟, 程茜. 基于有限元特征频率法的各向异性复合板兰姆波特性分析 [J]. 无损检测, 2017, 39(4): 67-71.
Zhang Lin-wen, Ma Shi-wei, Cheng Qian. Lamb wave characteristic analysis of anisotropic multilayer composite using finite element intrinsic frequency method [J]. NDT, 2017, 39(4): 67-71.
[27] 刘增华, 樊军伟, 何存富, 等. 基于概率损伤算法的复合材料板空气耦合Lamb波扫描成像 [J]. 复合材料学报, 2015, 32(1): 227-235.
Liu Zeng-hua, Fan Jun-wei, He Cun-fu, et al. Scanning imaging of composite plate using air-coupled Lamb wave based on probabilistic damage algorithm [J]. Acta Materiae Composite Sinica, 2015, 32(1): 227-235.
[28] 王强, 胥静, 王梦欣, 等. 结构裂纹损伤的Lamb波层析成像监测与评估研究 [J]. 机械工程学报, 2016, 52(6): 30-36.
Wang Qiang, Xu Jing, Wang Meng-xin, et al. Lamb wave tomography technique for crack damage detection [J]. Journal of Mechanical Engineering, 2016, 52(6): 30-36.
 
PDF(1478 KB)

Accesses

Citation

Detail

Sections
Recommended

/