Dynamic behavior of a concrete dam impacted by debris flows with rock

LIU Chun1,YU Zhixiang1,2,LUO Liru1,GU Song3,ZHAO Shichun1,2

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (14) : 161-168.

PDF(2484 KB)
PDF(2484 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (14) : 161-168.

Dynamic behavior of a concrete dam impacted by debris flows with rock

  • LIU Chun1,YU Zhixiang1,2,LUO Liru1,GU Song3,ZHAO Shichun1,2
Author information +
History +

Abstract

Aiming at the dynamic problem of a concrete dam impacted by debris flows with rock, based on the existing coupled SPH-FEM method, considering the coupled dynamic behaviors between rock-slurry-dam, a three-dimensional coupled numerical model was established.The dynamic behaviors of debris flows with rock including the impact process, impact force time-history, key point displacement time-history and dam damage were analyzed respectively.According to the damage mechanism of the dam and the engineering practice, three optimized anti-collision countermeasures, i.e., reducing the slope ratio, adding anti-collision piers and adding the buffer layer were analyzed.The results show that the coupled SPH-FEM method can reproduce the impact, climb and back-silting phenomena; the concentrated load of rock can easily cause the local damage of the dam;based on the comprehensive analysis of the decrease extent of impact force and the damage condition of the dam, the anti-collision ability of the dam with the buffer layer is optimal.The results obtained from the study are useful for the facilitating design of dam against debris flows with rock.

Key words

coupled SPH-FEM method / debris flows with rock / dynamic behavior / numerical simulation / concrete dam

Cite this article

Download Citations
LIU Chun1,YU Zhixiang1,2,LUO Liru1,GU Song3,ZHAO Shichun1,2. Dynamic behavior of a concrete dam impacted by debris flows with rock[J]. Journal of Vibration and Shock, 2019, 38(14): 161-168

References

[1] 缪吉伦,张文忠,周家俞. 基于SPH方法的黏性泥石流堆积形态数值模拟[J]. 自然灾害学报, 2013, 22(6): 125-130.
MIAO Ji-lun, ZHANG Wen-zhong, ZHOU Jia-yu. Numerical simulation of the accumulation state of viscous debris flow by smooth particle hydrodynamics method [J]. JOURNAL OF NATURAL DISASTERS, 2013, 22(6): 125-130.
[2] 张  楠,方志伟,韩  笑,等. 近年来我国泥石流灾害时空分布规律及成因分析[J]. 地学前缘, 2018, 25(2): 209-308.
ZHANG Nan, FANG Zhi-wei, HAN Xiao, et al. The study on temporal and spatial distribution law and cause of debris flow disaster in China in recent years [J]. Earth Science Frontiers, 2018, 25(2): 209-308.
[3] TANG C, RENGERS N, VANAC J. Triggering conditions and depositional characteristics of a disastrous debris flow event in Zhouqu city, Gansu Province, northwestern China [J]. Hazards Earth Syst, 2011, 11:2903-2912.
[4] 吴积善,田连权,康志成,等. 泥石流及其综合治理[M]. 北京: 科学出版社, 1993.
WU Ji-shan, TIAN Lian-quan, KANG Zhi-cheng, et al. Debris flow and its comprehensive control [M]. Beijing: Science Press, 1993.
[5] 余  政. 冲击荷载作用下泥石流拦挡坝变形破坏机制[D]. 西安科技大学,2016.
YU Zhen. The Mechanism of Deformation and Failure of Debris Flow Dam under the Shock Load [D]. Xi 'an university of science and technology, 2016.
[6] 何思明,李新坡,吴  永. 考虑弹塑性变形的泥石流大块石冲击力计算[J]. 岩石力学与工程学报, 2007, 26(8): 1664-1669.
HE Si-ming, LI Xin-po, WU Yong. CALCULATION OF IMPACT FORCE OF OUTRUNNER BLOCKS IN DEBRIS FLOW CONSIDERING ELASTOPLASTIC DEFORMATION [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1664-1669.
[7] 李培振,高  宇,郭沫君. 泥石流冲击力的研究现状[J]. 结构工程师, 2015, 31(1): 200-206.
LI Pei-gen, GAO Yu, GUO Mo-jun. Research Status and Development Trend of Debris-flow Impact Force [J]. Structural Engineers, 2015, 31(1): 200-206.
[8] 王兆印. 泥石流龙头运动的实验研究及能量理论[J]. 水力学报, 2001, 32(3): 18-26.
Wang Zhao-yin. Experimental study on debirs-flow head and the energy theory [J]. Journal of Hydraulic Engineering, 2001, 32(3): 18-26.
[9] HU Kai-heng, WEI Fang-qiang, LI Hong. Real-time measurement and preliminary analysis of debirs-flow impact force at Jiangjia Ravne, China [J]. Earth Surface Processes And Landforms, 2011, 36(9): 1268-1278.
[10] CHEN Hong-kai, TANG Hong-mei, CHEN Ye-ying. Research on method to calculate velocities of solid phase and liquid phase in debris flow [J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(3): 399-408.
[11] Han Z, Chen G, Li Y, et al. Numerical simulation of debris-flow behavior incorporating a dynamic method for estimating the entrainment [J]. Engineering Geology, 2015, 190: 52-64.
[12] Shan T, Zhao J. A coupled CFD-DEM analysis of granular flow impacting on a water reservoir [J]. Acta Mech, 2014, 225(8): 2449-2470.
[13] 李培振,程远超,高  宇,等. 底层框架柱在黏性泥石流冲击作用下的性能分析[J]. 结构工程师,2016, 32(3): 15-21.
LI Pei-gen, CHENG Yuan-chao, GAO Yu, et al. Study on Performance of the Bottom Column of a Frame Structure under Viscous Debris Flow Impact [J]. Structural Engineers, 2016, 32(3): 15-21.
[14] Xuansheng Cheng, Junling Wang, Yi Ren. Fluid-solid interaction dynamic response of masonry structures under debris flow action [J]. European Journal of Environmental and Civil Engineering, 2013, 17(9):841-859.
[15] 黄  雨,郝  亮,野々山人. SPH方法在岩土工程中的研究应用进展[J]. 岩土工程学报, 2008, 30(2): 256-262.
HUANG Yu, HAO Liang, NONOYAMA Hideto. The state of the art of SPH method applied in geotechnical engineering [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 256-262.
[16] LIU G R, LIU M B. Smoothed particle hydrodynamics-a meshfree particle method [M]. New Jersey: World Scientific Publishing Company, 2003.
[17] Wang W, Chen G, Han Z, et al. 3D numerical simulation of debris-flow motion using SPH method incorporating non-Newtonian fluid behavior [J]. Nat Hazards, 2016, 81(3): 1981-1998.
[18] Z Dai, Y Huang, H Cheng, et al. SPH model for fluid–structure interaction and its application to debris flow impact estimation [J]. Landslides, 2016, 14(3): 1-12.
[19] 潘建平,曾庆筠,王超众,等. 尾砂流滑冲击效应数值分析[J]. 中国安全科学学报, 2016, 26(10): 99-103.
PAN Jianbin, ZENG Qingyun, WANG Chaozhong, et al. Numerical analysis of tailings flow impact effect [J]. China Safety Science Journal, 2016, 26(10): 99-103.
[20] 孟  一,易伟建. 混凝土圆柱体试件在低速冲击下动力效应的研究[J]. 振动与冲击, 2011, 30(3): 205-210.
MENG Yi, YI Wei-jian. Dynamic behavior of concrete cylinder specimens under low velocity impact [J]. JOURNAL OF VIBRATION AND SHOCK, 2011, 30(3): 205-210.
[21] 程选生,张爱军,任  毅,等. 泥石流作用下砌体结构的破坏机理和防倒塌措施[J]. 工程力学, 2015, 32(8): 156-163.
CHENG Xuan-sheng, ZHANG Ai-jun, REN Yi, et al. FAILURE MECHANISM AND ANTI-COLLAPSE MEASURES OF MASONRY STRUCTURE UNDER DEBRIS FLOW [J]. ENGINEERING MECHANICS, 2015, 32(8): 156-163.
[22] 乔继延, 丁  桦, 郑哲敏. 爆炸排淤填石法中淤泥的本构模型[J]. 工程爆破, 2003, 9(3): 1-6.
QIAO Ji-yan, DING Ye, ZHENG Zhe-min. SEAOOZE CONSTITUTIVE MODEL FOR TOE-SHOOTING METHOD [J]. ENGINEERING BLASTING, 2003, 9(3): 1-6.
[23] Kwan, J.S.H.. Supplementary technical guidance on design of rigid debris-resisting barriers. Technical Note No.TN 2/2012. Geotech. Eng. Off (Civil Engineering and Development Department, The HKSAR Government).
[24] Jiang, Y.J., Towhata, I (2013). Experimental Study of Dry Granular Flow and Impact Behavior Against a Rigid Retaining Wall. Rock Mechanics & Rock Engineering. 46(4): 713-729.
[25] 吴积善, 田连权, 康志成, 等. 泥石流及其综合治理[M]. 北京: 科学出版社, 1993.
WU Ji-shan, TIAN Lian-quan, KANG Zhi-cheng, et al. Debris flow and its comprehensive control [M]. Beijing: science press, 1993.
[26] AG Hanssen, Y Girard, L Olovsson, et al. A numerical model for bird strike of aluminium foam-based sandwich panels [J]. International Journal of Impact Engineering, 2006, 32(7): 1127-1144.
PDF(2484 KB)

Accesses

Citation

Detail

Sections
Recommended

/