[1] 刘畅, 伍星, 刘韬,等. 基于近似等距投影和支持向量机的滚动轴承故障诊断[J]. 振动与冲击, 2018, 37(5).
Liu Chang, Wu Xing, Liu Tao, et al. Fault diagnosis of rolling bearings based on near-isometric projection and support vector machine[J]. Journal of vibration and shock, 2018, 37(5).
[2] Cui L, Huang J, Zhang F. Quantitative and Localization Diagnosis of a Defective Ball Bearing Based on Vertical-Horizontal Synchronization Signal Analysis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8695-8706.
[3] Cai G, Chen X, He Z. Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox[J]. Mechanical Systems & Signal Processing, 2013, 41(1-2):34-53.
[4] Perepu S K, Tangirala A K. Reconstruction of missing data using compressed sensing techniques with adaptive dictionary[J]. Journal of Process Control, 2016, 47:175-190.
[5] 张新鹏, 胡茑庆, 程哲,等. 基于压缩感知的振动数据修复方法[J]. 物理学报, 2014, 63(20):115-124.
ZHANG Xin-peng, HU Niao-qing, CHENG Zhe, et al. Vibration data recovery based on compressed sensing[J]. Acta Physica Sinica. 2014, 63(20):115-124.
[6] 周亚同, 王丽莉, 唐红梅. 基于压缩感知的稀疏度自适应图像修复[J]. 铁道学报, 2014(9):52-59.
ZHOU Ya-tong, WANG Li-li, TANG Hong-mei. Sparsity adaptive algorithm for image inpainting Based on compressive sensing[J]. Journal of the China Railway Society, 2014(9):52-59.
[7] 余发军, 周凤星, 严保康. 基于字典学习的轴承早期故障稀疏特征提取[J]. 振动与冲击, 2016, 35(6):181-186.
YU Fa-jun, ZHOU Feng-xing, YAN Bao-kang. Bearing initial fault feature extraction via representation based on dictionary learning[J]. Journal of vibration and shock, 2016, 35(6): 181-186.
[8] 杨真真, 杨震, 孙林慧. 信号压缩重构的正交匹配追踪类算法综述[J]. 信号处理, 2013, 29(4):486-496.
YANG Zhen-zhen, YANG Zhen, SUN Lin-hui. A Survey on Orthogonal Matching Pursuit Type Algorithms for Signal Compression and Reconstruction[J]. Journal of signal processing, 2013, 29(4): 486-496
.
[9] 高洪波, 刘杰, 李允公. 基于实测冲击响应字典稀疏表示的齿轮系统侧隙故障特征提取[J]. 振动与冲击, 2017, 36(11):86-91.
Gao Hongbo, Liu Jie, Li Yungong. Backlash fault feature extraction of spur gear systems based on sparse representation dictionary of measured impulse responses [J]. Journal of vibration and shock, 2017, 36(11) :86-91.
[10] Cui L, Wu N, Ma C, et al. Quantitative fault analysis of roller bearings based on a novel matching pursuit method with a new step-impulse dictionary[J]. Mechanical Systems & Signal Processing, 2016, 68.
[11] Do T T, Lu G, Nguyen N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. Signals, Systems and Computers, 2008, Asilomar Conference on. IEEE, 2009:581-587.
[12] Wei Y, Lu Z, Yuan G, et al. Sparsity Adaptive Matching Pursuit Detection Algorithm Based on Compressed Sensing for Radar Signals[J]. Sensors, 2017, 17(5):1120.
[13] Du Z, Chen X, Zhang H. Feature identification with compressive measurements for machine fault diagnosis[C] Instrumentation and Measurement Technology Conference. IEEE, 2015:977-987.
[14] 周俊, 伍星, 迟毅林,等. 基于改进频域压缩感知的轴承复合故障欠定盲提取[J]. 振动与冲击, 2015, 34(14):123-128.
ZHOU Jun, WU Xing, CHI Yilin. Underdetermained blind extraction for bearing complex failures based on improved frequency damain compressive sensing[J].Journal of vibration and shock,2015, 34(14):123-128.
[15] Wang H, Ke Y, Song L, et al. A Sparsity-Promoted Decomposition for Compressed Fault Diagnosis of Roller Bearings[J]. Sensors, 2016, 16(9).
[16] 苗中华, 周广兴, 刘海宁,等. 基于稀疏编码的振动信号特征提取算法与实验研究[J]. 振动与冲击, 2014, 33(15): 76-81.
Miao Zhonghua, Zhou Guangxing, Liu Haining, et al. Tests and feature extraction algorithm of vibration signals based on sparse coding[J]. Journal of vibration and shock, 2014, 33(15):76-81.
[17] Sancetta A. Greedy algorithms for prediction[J]. Bernoulli, 2016, 22(2):1227-1277.