Vibration reliability analysis on a spindle system based on AK-MCS method

FENG Jilu1,SUN Zhili2,ZHAO Jian1,ZHANG Jing1,LIANG Chunfang1

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (18) : 135-140.

PDF(1010 KB)
PDF(1010 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (18) : 135-140.

Vibration reliability analysis on a spindle system based on AK-MCS method

  • FENG Jilu1,SUN Zhili2,ZHAO Jian1,ZHANG Jing1,LIANG Chunfang1
Author information +
History +

Abstract

The spindle system of a CNC lathe was simplified based on the lump-mass method,and a vibration model with ten freedom degrees including the stiffness, damping, eccentric mass and nonlinear contact force of combined rolling bearings was established.The numerical results of the vibration differential equation of the spindle-bearing system were obtained by Runge-Kutta method.The randomness of the related parameters influencing the spindle vibration was considered.The vibration amplitude of the spindle centre at the axis end was utilized as an index to evaluate the reliability of spindle vibration.A combination method of Kriging and Monte Carlo(AK-MCS) was used to calculate the reliability of spindle vibration.The results show that the failure probabilities calculated by the AK-MCS algorithm and direct Monte Carlo respectively are almost equal, but the AK-MCS algorithm has a higher computational efficiency.This further illustrates that the AK-MCS algorithm is accurate and efficient, and that the method is applicable to calculate the reliability of a strongly nonlinear system.

Key words

Vibration reliability / Spindle system / AK-MCS method / Bifurcation

Cite this article

Download Citations
FENG Jilu1,SUN Zhili2,ZHAO Jian1,ZHANG Jing1,LIANG Chunfang1. Vibration reliability analysis on a spindle system based on AK-MCS method[J]. Journal of Vibration and Shock, 2019, 38(18): 135-140

References

[1] 赵万华,杜超,张俊,等. 主轴转子系统动力学解析建模方法[J]. 机械工程学报. 2013, 49(6): 44-51.
Zhao Wanhua, Du Chao, Zhang Jun, et al. Analytical modeling method of dynamics for the spindle rotor system[J]. Journal of Mechanical Engineering, 2013, 49(6): 44-51.
[2] 孟杰,陈小安. 电主轴动力学分析的传递矩阵法[J]. 机械设计. 2008,25(07): 37-40.
Meng Jie, Chen Xiaoan. Transference matrix method for dynamics analysis of motorized spindle[J]. Journal of Machine Design, 2008,25(07): 37-40.
[3] 蔡力钢,马仕明,赵永胜,等. 多约束状态下重载机械式主轴有限元建模及模态分析[J]. 机械工程学报. 2012, 48(3): 165-173.
Cai Ligang, Ma Shiming, Zhao Yongsheng, et al. Finite element modeling and modal analysis of heavy-duty mechanical spindle under multiple constraints[J]. Journal of Mechanical Engineering, 2012, 48(3): 165-173. 
[4] 黄伟迪, 甘春标, 杨世锡,等. 高速电主轴角接触球轴承刚度及其对电主轴临界转速的影响分析[J].振动与冲击, 2017, 36(10):19-25.
Huang Weidi, Gan Chunbiao, Yang Shixi, et al. Analysis on the stiffness of angular contact ball bearings and its effect on the critical speed of a high speed motorized spindle[J]. Journal of Vibration and Shock, 2017, 36(10):19-25.
[5] 张丽秀, 阎铭, 吴玉厚,等. 150MD24Z7.5高速电主轴多场耦合模型与动态性能预测[J]. 振动与冲击, 2016, 35(1):59-65.
ZHANG Lixiu, YAN Ming, WU Yuhou, LU Feng. Model coupled multi-physics and prediction of dynamic performance for 150MD24Z7.5 motorized spindle. Journal of Vibration and Shock, 2016, 35(1): 59-65.
[6] Yang Y, Wan M, Ma Y C, et al. A new method using double distributed joint interface model for three-dimensional dynamics prediction of spindle-holder-tool system[J]. International Journal of Advanced Manufacturing Technology, 2018, 95(5-8):2729-2745.
[7] Metsebo J, Upadhyay N, Kankar P K, et al. Modelling of a rotor-ball bearings system using Timoshenko beam and effects of rotating shaft on their dynamics[J]. Journal of Mechanical Science and Technology. 2016, 30(12): 5339-5350.
[8] Duncan G S, Tummond M F, Schmitz T L. An investigation of the dynamic absorber effect in high-speed machining[J]. International Journal of Machine Tools and Manufacture. 2005, 45(4-5): 497-507.
[9] Kim S, Lee S. Prediction of thermo-elastic behavior in a spindle--bearing system considering bearing surroundings [J]. International Journal of Machine Tools and Manufacture. 2001, 41(6): 809-831.
[10] Jorgensen B R, Shin Y C. Dynamics of machine tool spindle/bearing systems under thermal growth [J]. Journal of Tribology. 1997, 119(4): 875-882.
[11] 张伟刚,高尚晗,龙新华,等. 机床主轴-滚动轴承系统非线性动力学分析[J]. 振动与冲击. 2008,27(09):72-75.
Zhang Weigang, Gao Shanghan, Long Xinhua, et al. Nonlinear Analysis for A Machine-Tool Spindle System Supported with Ball Bearing[J]. Journal of Vibration and Shock, 2008,27(09):72-75.
[12] Ishida Y, Inagaki M, Ejima R, et al. Nonlinear resonances and self-excited oscillations of a rotor caused by radial clearance and collision[J]. Nonlinear Dynamics. 2009, 57(4): 593-605.
[13] 张峰,唐樟春,刘永寿,等. 基于分层抽样法的可靠性灵敏度分析[J]. 计算力学学报. 2012,29(06): 841-846.
Zhang Feng, Tang Zhangchun, Liu Yongshou, et al. Stratified sampling algorithm based reliability sensitivity[J]. Chinese Journal of Computational Mechanics,2012,29(06): 841-846.
[14] Feng Z, Zhenzhou L, Lijie C, et al. Reliability Sensitivity Algorithm Based on Stratified Importance Sampling Method
for Multiple Failure Modes Systems[J]. Chinese Journal of Aeronautics. 2010, 23(6): 660-669.
[15] 时蓬,杨明,刘飞. 方差缩减中的控制变量方法研究[J]. 科学技术与工程. 2011(22): 5323-5327.
Shi Peng, Yang Ming, Liu Fei. Research on Control-variate Estimators of Variance Reduction[J]. Science Technology and Engineering, 2011(22): 5323-5327.
[16] 陈果. 转子-滚动轴承-机匣耦合系统中滚动轴承故障的动力学分析[J]. 振动工程学报. 2008,21(06): 577-587.
Chen Guo. Dynamic analysis of ball bearing faults in rotor-ball bearing-stator coupling system[J]. Journal of Vibration Engineering,2008,21(06): 577-587.
[17] 冯吉路, 孙志礼, 李皓川,等. 多列组合角接触球轴承刚度和位移量[J]. 振动、测试与诊断. 2016, 36(4):784-789.
Feng Jilu, Sun Zhili, Li Haochuan, et al. Investigation of the stiffness and displacement of multiple combinations of angular contact ball bearings[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(4):784-789.
[18] Feng Jilu, Sun Zhili, Sun Hongzhe. Optimization of structure parameters for angular contact ball bearings based on Kriging model and particle swarm optimization algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2016, 231(23): 4298-4308.

 
PDF(1010 KB)

Accesses

Citation

Detail

Sections
Recommended

/