Performance study on the secondary suspension system of a suspended monorail vehicle based on the quasi-zero-stiffness theory

CHEN Zhihui1,2,ZHAI Wanming1,ZHU Shengyang1,LV Kaikai1

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (2) : 13-17.

PDF(1514 KB)
PDF(1514 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (2) : 13-17.

Performance study on the secondary suspension system of a suspended monorail vehicle based on the quasi-zero-stiffness theory

  • CHEN Zhihui1,2,ZHAI Wanming1,ZHU Shengyang1,LV Kaikai1
Author information +
History +

Abstract

Secondary suspension system is one of the important parts to ensure the safe and stable operation of a suspended monorail vehicle.Based on the the quasi-zero-stiffness(QZS) and multi-body dynamics theory,a vertical model of the suspended monorail vehicle with a secondary suspension system holding QZS characteristic was established and the vertical vibration equations were deduced.Then the vibration isolation characteristics of the secondary suspension systems with QZS and traditional linear stiffness characteristics were further studied comparatively by adopting the dynamic model.The following conclusions are drawn that the QZS of the secondary suspension system for the suspended monorail vehicle can be realized by using a parallel oblique spring with vertical elastic elements.The vertical dynamic responses of the vehicle with QZS system are obviously lower than those with the traditional linear stiffness system,and the low frequency vibration isolation performance is satisfactory.


Key words

suspended monorail vehicle / secondary suspension system / quasi-zero-stiffness / vibration isolation characteristic

Cite this article

Download Citations
CHEN Zhihui1,2,ZHAI Wanming1,ZHU Shengyang1,LV Kaikai1. Performance study on the secondary suspension system of a suspended monorail vehicle based on the quasi-zero-stiffness theory[J]. Journal of Vibration and Shock, 2019, 38(2): 13-17

References

[1]. 翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J].西南交通大学学报,2016,51(2):209-226.
Zhai Wanming, Zhao Chunfa. Frontiers and Challenges of Sciences and Technologies in Modern Railway Engineering[J]. Journal of Southwest Jiaotong University, 2016,51(2): 209-226.
[2]. 黄彩虹,曾京,邬平波等. 铁道客车车体弹性振动减振研究[J]. 工程力学,2010,27(12):250-256.
Huang Caihong, Zeng Jing, Wu Pingbo, et al. Study on Car Body Flexible Vibration Reduction for Railway Passenger Carriage[J]. Engineering Mechanics, 2010,27(12):250-256.
[3]. 曾京,罗仁. 考虑车体弹性效应的铁道客车系统振动分析[J]. 铁道学报, 2007,29(6):19-25.
Zeng Jing, Luo Ren. Vibration Analysis of Railway Passenger Car Systems by Considering Flexible Carbody Effect[J]. Journal of the China Railway Society, 2007,29(6):19-25.
[4]. 张月英. 准零刚度隔振器的特性分析及试验研究[D]. 长沙:湖南大学,2013.
Zhang Yueying. On Analytical and Experimental Assessment of Quai-Zero-Stiffness Isolator[D]. Changsha: Hunan University, 2013.
[5]. 张施祥. 一种准零刚度隔振系统及其在车载精密仪器隔振中的应用[D]. 长沙:湖南大学,2011.
Zhang Shixiang. A Quasi-zero-stiffness Vibration Isolation System and Its Application on the on-board Precision Vibration Isolation[D]. Changsha: Hunan University, 2011
[6]. 闫健. 准零刚度隔振器特性研究与星上隔振应用[D]. 哈尔滨:哈尔滨工业大学,2016
Yan Jian. Characterization Analysis of Quasi-zero-stiffness Isolator and Application on Satellite Vibration Suppresion [D]. Harbin: Harbin Institute of Technology, 2016.
[7]. Alabuzhev P, Gritchin A, Kim L, et al. Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness[M]. USA: Hemisphere Publishing Corporation, 1989.
[8]. Carrella A, Brennan M J, Waters T P. Static Analysis of a Passive Vibration Isolator with Quasi-Zero-Stiffness Characteristic[J]. Journal of Sound and Vibration, 2007,301:678-689.
[9]. 刘兴天,孙婧雅,肖锋,等. 准零刚度微振动隔振器的原理和性能研究[J]. 振动与冲击,2013,32(21):69-73.
Liu Xingtian, Sun Jingya, Xiao Feng, et al. Principle and Performance of a Quasi-Zero Stiffness Isolator for Micro-Vibration Isolation[J]. Journal of Vibration and Shock, 2013,32(21):69-73.
[10]. 徐道临,赵智,周加喜. 气动可调式准零刚度隔振器设计及特性分析[J]. 湖南大学学报(自然科学版),2013,40 (6):47-52.
Xu Daolin, Zhao Zhi, Zhou Jiaxi. Design and Analysis of an Adjustable Pneumatic Vibration Isolator with Quasi-zero-stiffness Characteristic[J]. Journal of Hunan University (Natural Scienses), 2013,40 (6):47-52.
[11]. 徐道临,周杰,周加喜,等. 碟形橡胶准零刚度隔振器的设计和特性分析[J]. 湖南大学学报(自然科学版), 2015,42(8):22-28.
Xu Daolin, Zhou Jie, Zhou Jiaxi, et al. Design and Analysis of a Disc Rubber Vibration Isolator with Quasi-Zero-Stiffness Characteristic[J]. Journal of Hunan University (Natural Scienses), 2015,42(8):22-28.
[12]. 徐道临,张月英,周加喜,等. 一种准零刚度隔振器的特性分析与实验研究[J]. 振动与冲击,2014,33(11):208-213.
Xu Daolin, Zhang Yueying, Zhou Xijia, et al. Characteristic Analysis and Experimental Investigation for a Vibration Isolator with Quasi-zero Stiffness[J]. Journal of Vibration and Shock, 2014,33(11):208-213.
[13]. 孙煜,宫岛,周劲松,等. 低地板有轨电车准零刚度二系悬挂装置系统研究[J]. 机械工程学报,2017,53(8):132-137.
Sun Yu, Gong Dao, Zhou Jingsong, et al. Study on Second Quasi-zero-stiffness Suspension of Low floor Tramcar[J]. Journal of Mechanical Engineering, 2017,53(8):132-137.
[14]. 高红星,池茂儒,朱旻昊,等. 空气弹簧模型研究[J]. 机械工程学报,2015,51(4):108-115.
Gao Hongxing, Chi Maoru Zhu Minhao, et al. Study on Air Spring Model[J]. Journal of Mechanical Engineering, 2017,53(8):132-137.
[15]. 庄继德.汽车轮胎学[M]. 北京:北京理工大学出版社,1996.
Zhuang Jidei. Automotive Tires[M]. Beijing: Beijing Institute of Technology Press,1996.
[16]. 王洪礼,任炜,乔宁. 汽车轮胎动力学特性研究[J].机械强度,2002, 24(3):345-348
Wang Hongli, Ren Wei, Qiao Ning. Research of the Nonlinear Dynamic Characteristic of Automotive Tires[J]. Journal of Mechanical Strength, 2002, 24(3):345-348.
[17]. 翟婉明.车辆-轨道耦合动力学(第四版)[M]. 2015,北京:科学出版社.135-136.
Zhai Wanming. Vehicle-Track Coupled Dynamics(Forth Edition). 2015, Beijing: Science Press. 135-136.
[18]. Zhai Wanming. Two Simple Fast Integration Methods for Larger-sacle Dynamic Problems in Engineering[J]. International Journal for Numerical Methods in Engineering, 1996, 39(24):4199-4214.
PDF(1514 KB)

Accesses

Citation

Detail

Sections
Recommended

/