Modal parameters identification using the density peaks clustering algorithm

WANG Fei-yu1, HU Zhi-xiang1, HUANG Xiao2

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (2) : 172-178.

PDF(1683 KB)
PDF(1683 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (2) : 172-178.

Modal parameters identification using the density peaks clustering algorithm

  •  WANG Fei-yu1, HU Zhi-xiang1, HUANG Xiao2
Author information +
History +

Abstract

The sparse component analysis is an efficient approach to handle the underdetermined blind source separation,which contains two steps: calculating the mixing matrix and second,reconstructing the sources.In the paper,the modal shapes were calculated by using the Density Peaks Clustering Algorithm to deal with the cases that the number of sources cannot be known a priori and high order modes are overlapped with each other.Compared to the traditional clustering algorithms,it has two advantages:  determining the centers of clusters according to the decision graphs directly and being insensitive to noises.The SL0 algorithm a sparse recovery algorithm,was used to reconstruct the sources.Then the frequency of each mode was identified from the sources in time-frequency domain.The effectiveness of the proposed method was validated via adopting a six degree-of-freedom vibration system as a simulation example.

Key words

 modal analysis / sparse component analysis / Density Peaks Clustering Algorithm / SL0 algorithm

Cite this article

Download Citations
WANG Fei-yu1, HU Zhi-xiang1, HUANG Xiao2. Modal parameters identification using the density peaks clustering algorithm[J]. Journal of Vibration and Shock, 2019, 38(2): 172-178

References

[1] Zhang Y, Zhang Z, Xu X, et al. Modal parameter identification using response data only[J]. Journal of Sound and Vibration, 2005, 282(1): 367-380.
[2] Kerschen G, Poncelet F, Golinval J, et al. Physical interpretation of independent component analysis in structural dynamics[J]. Mechanical Systems and Signal Processing, 2007, 21(4): 1561-1575.
[3] Zhou W, Chelidze D. Blind source separation based vibration mode identification[J]. Mechanical Systems and Signal Processing, 2007, 21(8): 3072-3087.
[4] Poncelet F, Kerschen G, Golinval J, et al. Output-only modal analysis using blind source separation techniques[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2335-2358.
[5] 付志超,程伟,徐成.基于R-SOBI的结构模态参数辨识方法[J].振动与冲击,2010(1): 108-111.
   Fu ZC, Cheng W, Xu C. Modal parameter identification via robust second-order blind identification method[J]. Journal of Vibration and Shock, 2010(1): 108-111.
[6] 张晓丹,姚谦峰.基于盲源分离的结构模态参数识别[J].振动与冲击,2010,29(3): 150-153.
   Zhang XD, Yao QF. Method of modal parameters identification based on blind sources separation[J]. Journal of Vibration and Shock, 2010,29(3): 150-153.
[7] 姚谦峰,张晓丹.二阶统计量盲辨识在模态参数识别中的应用[J].工程力学,2011,28(10): 72-77.
Yao QF, Zhang XD. Application of second-order staistics blind identification on identifying modal parameters[J].  Engineering Mechanics, 2011,28(10): 72-77.
[8] Georgiev P, Theis F J, Cichocki A, et al. Sparse component analysis and blind source separation of underdetermined mixtures[J]. IEEE Transactions on Neural Networks, 2005, 16(4): 992-996.
[9] Yang Y, Nagarajaiah S. Time-Frequency Blind Source Separation Using Independent Component Analysis for Output-Only Modal Identification of Highly Damped Structures[J]. Journal of Structural  Engineering-asce, 2013, 139(10): 1780-1793.
[10] Yu K, Yang K, Bai Y, et al. Estimation of modal parameters using the sparse component analysis based underdetermined blind source separation[J]. Mechanical Systems and Signal Processing, 2014, 45(2): 302-316.
[11] S. Boyd, L. Vandenberghe, Convex Optimization, 7th ed, Cambridge University Press, NewYork, 2009.
[12] Mohimani H, Babaiezadeh M, Jutten C, et al. A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed l0-Norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
[13] Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[14] V. G. Ã. Reju, S. N. Koh, I. Y. Soon, An algorithm for mixing matrix estimation in instantaneous blind source separation, Signal Processing 89 (2009) 1762–1773.
[15] Amini F, Hedayati Y. Underdetermined blind modal identification of structures by earthquake and ambient vibration measurements via sparse component analysis[J]. Journal of Sound and Vibration, 2016: 117-132.
[16] Chen S S, Donoho D L, Saunders M A, et al. Atomic Decomposition by Basis Pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61.
[17] Rui Xu, Donald Wunsch, et al. Survey of clustering algorithms. Neural Networks, IEEE Transactions on, 16(3):645–678, 2005.
[18] Johnson E A, Lam H F, Katafygiotis L S, et al. Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data[J]. Journal of Engineering Mechanics-asce, 2004, 130(1): 3-15.
[19] Johnson E A, Lam H F, Katafygiotis L S, et al. Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data[J]. Journal of Engineering Mechanics-asce, 2004, 130(1): 3-15.
PDF(1683 KB)

Accesses

Citation

Detail

Sections
Recommended

/