Elimination of ultrasonic tailing based on the superposition method

ZHENG Guanru, ZHANG Hui, LI Zhi, ZENG Zhoumo

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (2) : 219-225.

PDF(1491 KB)
PDF(1491 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (2) : 219-225.

Elimination of ultrasonic tailing based on the superposition method

  • ZHENG Guanru, ZHANG Hui, LI Zhi, ZENG Zhoumo
Author information +
History +

Abstract

A method aiming at eliminating the ultrasonic tailing in the output signals of a capacitive micromachined ultrasonic transducer(CMUT) was proposed the principle of CMUT was introduced,and an equivalent mass-spring-damper model was established by equivalently lumping the parameters of the CMUT.The reason of the appearance of CMUT’s tailing signal was explained and the relationship between the pulse width and the length of the tailing signal was analyzed.An opposite phase excitation signal was designed,and the effectiveness of the superposition method was proved.A test system was designed,containing a FPGA,a signal drive circuit,a signal extraction circuit and a signal acquisition card.The experiments verify the effectiveness of the method for decreasing blind zones.

Key words

CMUT / ultrasonic tailing / blind distance / spring-mass-damper model

Cite this article

Download Citations
ZHENG Guanru, ZHANG Hui, LI Zhi, ZENG Zhoumo. Elimination of ultrasonic tailing based on the superposition method[J]. Journal of Vibration and Shock, 2019, 38(2): 219-225

References

[1] Lynnworth L C. Ultrasonic Measurements for Process Control: Theory, Techniques, Applications[M]. Academic Press, 1989.
[2] Grandia W A, Fortunko C M. NDE applications of air-coupled ultrasonic transducers[J]. Proceedings of the IEEE Ultrasonics Symposium, 1995, 1(1):697 - 709.
[3] Dahl T, Ealo J L, Bang H J, et al. Applications of airborne ultrasound in human-computer interaction.[J]. Ultrasonics, 2014, 54(7):1912-1921.
[4] Bulman J B, Ganezer K S, Halcrow P W, et al. Noncontact ultrasound imaging applied to cortical bone phantoms[J]. Medical Physics, 2012, 39(6):3124-3133.
[5] 马志敏, 刘珍秧, 刘爱东,等. 一种自动抑制超声测量盲区的方法[J]. 声学技术, 2005, 24(1):55-57.
MA Zhimin, LIU Zhenyang, LIU Aidong, A method of automatic suppression of blind field in ultrasonic measurement[J]. Technical Acoustics. 2005, 24(1):55-57.
[6] 贺焕林, 方向前. 超声波拖尾电路的研究[J]. 半导体技术, 2005, 30(8):69-70.
HE Huanlin, FANG Xiangqian. Researching on the Smearing Circuit of Ultrasonic[J]. Semiconductor Technology, 2005, 30(8):69-70.
[7] 钟慧婷, 廖俊必, 吴瑞. 一种有效消除超声测量拖尾的新方法[J]. 仪器仪表学报, 2007, 28(6):1075-1079.
ZHONG Huiting, LIAO Junbi, WU Rui. New method of eliminating ultrasonic tailing efficiently[J]. Chinese Journal of Scientific Instrument, 2007, 28(6):1075-1079.
[8] 张慧, 赵晓楠, 张雯,等. 空气耦合式电容微超声换能器的设计与分析[J]. 仪器仪表学报, 2016, 37(10):2218-2225.
ZHANG Hui, ZHAO Xiaonan, ZHANG Wen. Design and analysis of air-coupled capacitive micromachined ultrasonic transducers[J]. Chinese Journal of Scientific Instrument, 2016, 37(10):2218-2225.
[9] Na S, Wong L L, Chen A I, et al. Lumped element modeling of air-coupled capacitive micromachined ultrasonic transducers with annular cell geometry[J]. Ultrasonics, 2016, 76-19.
[10] Hansen S T, Turo A, Degertekin F L, et al. Characterization of capacitive micromachined ultrasonic transducers in air using optical measurements[C], Ultrasonics Symposium, 2000 IEEE. IEEE, 2000, 1: 947-950.
[11] Zhang W. Simulation characterization of CMUT with vented square membrane[C]//2015 International Conference on Optical Instruments and Technology: Micro/Nano Photonics and Fabrication.: SPIE,2015.
[12] Zhang W, Zhang H, Jin S, et al. A Two-Dimensional CMUT Linear Array for Underwater Applications: Directivity Analysis and Design Optimization[J]. Journal of Sensors,2016,(2016-4-13), 2016, 2016:1-8.
PDF(1491 KB)

Accesses

Citation

Detail

Sections
Recommended

/