Effects of Küssner-function-based aerodynamic admittance models on the buffeting responses of a long-span bridge

ZHANG Zhitian,CHEN Tianle,WU Changqing

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (20) : 131-139.

PDF(3045 KB)
PDF(3045 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (20) : 131-139.

Effects of Küssner-function-based aerodynamic admittance models on the buffeting responses of a long-span bridge

  • ZHANG Zhitian,CHEN Tianle,WU Changqing
Author information +
History +

Abstract

The Küssner-type function was adopted to simulate the buffeting forces and aerodynamic admittances (AAs) in the time domain.Wind tunnel tests were conducted with the elementary scheme of a long-span bridge to obtain the AAs of its main girder.Based on the experimentally obtained AAs and the Sears function, which was derived from thin airfoil theories, the corresponding Küssner functions were obtained via parametric identification.Finally, the buffeting responses of the concerned bridge were computed in the time domain with the Küssner functions identified from the Sears AAs, experimentally obtained AAs, and without consideration of any, respectively.The analytical results show that the Küssner function method is able to transfer frequency-domain-based AAs to time-domain flexibly, and therefore benefits inclusion of various nonlinearities in dynamic FEM simulations.Results based on the numerical example indicate that exclusion of the AAs results in extraordinarily large buffeting responses.When AAs are included, the buffeting results based on the Sears function are significantly greater than those based on experiments.Therefore, it is appropriate to employ experimentally-based AAs to replace the extensively used the Sears function for buffeting analyses of long-span bridges, even for those stiffened with flat box-girders.

Key words

 bridge / Küssner function / buffeting / time-domain / test / aerodynamic admittance

Cite this article

Download Citations
ZHANG Zhitian,CHEN Tianle,WU Changqing. Effects of Küssner-function-based aerodynamic admittance models on the buffeting responses of a long-span bridge[J]. Journal of Vibration and Shock, 2019, 38(20): 131-139

References

[1] Deodatis G. Simulation of Ergodic Multivariate Stochastic Processes[J]. Journal of Engineering Mechanics, 1996, 122(8):778-787.
[2] Shinozuka M, Yun C B, Seya H. Stochastic methods in wind engineering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1990, 36(90):829-843.
[3] Minh N N, Miyata T. Numerical simulation of wind turbulence and buffeting analysis of long-span bridges[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1999, 83(1-3):301-315.
[4] 曹映泓, 项海帆, 周颖. 大跨度桥梁随机风场的模拟[J]. 土木工程学报, 1998, 31(3):72-79.
Cao Yinghong,Xiang Haifan,Zhou Ying. Simulation of stochastic wind field on long-span bridge[J]. China Civil Engineering Journal, 1998, 31(3):72-79.
[5] Davenport A G. Buffeting of a suspension bridge by storm winds[J]. Proc Asce, 1962, 88(3):233-270.
[6] Sears, William R. Some aspects of non-stationary airfoil theory and its practical application[J]. Journal of the Aeronautical Sciences, 1941, 8(3):104-108
[7] Scanlan R H. Role of Indicial Functions in Buffeting Analysis of Bridges[J]. Journal of Structural Engineering, 1984, 110(7):1433-1446.
[8] 韩万水, 陈艾荣, 胡晓伦. 大跨度斜拉桥抖振时域分析理论实例验证及影响因素分析[J]. 土木工程学报, 2006, 39(6):66-71.
Han Wanshui,Chen Airong,Hu Xiaolun.Verification of time- domain buffeting theory and analysis of influence factors for long-span cable-stayed bridges[J]. China Civil Engineering Journal, 2006, 39(6):66-71.
[9] 潘韬, 张敏, 葛耀君,等. 典型桥梁断面的二维抖振响应分析[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(3):537-541.
Pan Tao,Zhang Min,Ge Yaojun,et al. Two-dimensional Buffeting Respons Analysis of Typical Bridge Section[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2015, 39(3):537-541.
[10] 韩艳, 陈政清, 王建辉,等. 贵阳小关桥双肢薄壁墩抖振响应试验与影响因素分析[J]. 土木工程学报,2009, 42(1):41-48.
Han Yan,Chen Zhengqing,Wang Jianhui,et al.Analysis of influence factors of buffeting response and full-scale aeroelastic experiments for the Xiaoguan bridge[J]. China Civil Engineering Journal,2009, 42(1):41-48.
[11] 于洪刚, 葛耀君, 赵林,等. 上海卢浦大桥抖振时域分析[J]. 结构工程师, 2009, 25(3):84-89.
Yu Honggang, Ge Yaojun,Zhao Lin,et al. Time domain analysis of buffeting on Shanghai Lupu Bridge[J]. Structural Energineering, 2009, 25(3):84-89.
[12] K. Aas-Jakobsen, E. Strommen. Time domain buffeting response calculations of slender structures[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2001, 89(5):341-364.
[13] Küssner, H.G.: Zusammenfassender Bericht über den instationären Auftrieb von Flügeln[R]. Luftfahrtforschung 13, 410–424 (1936)
[14] 张志田, 胡海波, 陈政清. 桥梁气动自激力阶跃函数及时域颤振的数值算法[J]. 土木工程学报, 2011, 44(2):99-107.
Zhang Zhitian,Hu haibo,Chen Zhengqing.Bridge indicial functions for self-excited aerodynamic forces and numerical algorithm for time domain flutter[J]. China Civil Engineering Journal, 2011, 44(2):99-107.
[15]  Z T Zhang, Z Q Chen, Y Y Cai,et al.Indicial Functions for Bridge Aeroelastic Forces and Time-Domain Flutter Analysis[J]. Journal of Bridge Engineering, 2011, 16(4):546-557.
[16] Scanlan R H. The action of flexible bridges under wind, II: Buffeting theory[J]. Journal of Sound & Vibration, 1978, 60(2):201-211.
[17] Scanlan R H, Gade R H. Motion of suspended bridge spans under gusty wind[J]. Journal of the Structural Division, 1977, 103(9):1867-1883.
[18] 雷英杰, 张善文. MATLAB遗传算法工具箱及应用.第2版[M]. 西安电子科技大学出版社, 2014.
[19] 张若雪. 桥梁结构气动参数识别的理论和试验研究[D]. 同济大学, 1998.
[20] 靳欣华, 项海帆, 陈艾荣. 平板气动导纳识别理论及测量[J]. 同济大学学报, 2003, 31(10):1168-1172.
Jin Xinhua,Xiang Haifan,Chen Airong. Identification of flat-plate aerodynamic admittance  theory and test [J]. Journal of Tongji University, 2003, 31(10):1168-1172.
[21] 朱乐东, 李思翰, 郭震山. 基于振动翼栅脉动风场测力试验的桥梁断面气动导纳识别方法研究[C]. 全国结构风工程学术会议. 2009.
[22] Z  T  Zhang, W F Zhang , Y J Ge. Aerodynamic admittances of bridge deck sections: Issues and wind field dependence[J].  Wind and Structures ,2017, 25(3): 283-299
[23] Kaimal J C, Wyngaard J C, Izumi Y, et al. Spectral characteristics of surface-layer turbulence[M]. John Wiley & Sons, Ltd, 1972:563-589.
[24] Panofsky H A, Tennekes H, Lenschow D H, et al. The characteristics of turbulent velocity components in the surface layer under convective conditions[J]. Boundary-Layer Meteorology, 1977, 11(3):355-361.
PDF(3045 KB)

518

Accesses

0

Citation

Detail

Sections
Recommended

/