Simulation for SHPB tests based on a mesoscopic concrete aggregate model

GUO Ruiqi1,2,REN Huiqi2,ZHANG Lei2,LONG Zhilin1,WU Xiangyun2,LI Zebin2

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (22) : 107-116.

PDF(2735 KB)
PDF(2735 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (22) : 107-116.

Simulation for SHPB tests based on a mesoscopic concrete aggregate model

  • GUO Ruiqi1,2,REN Huiqi2,ZHANG Lei2,LONG Zhilin1,WU Xiangyun2,LI Zebin2
Author information +
History +

Abstract

Concrete was considered as a two-phase composite material composed of coarse aggregates and cement matrix and a cylindrical three-dimensional concrete aggregate model was established and applied to split Hopkinson pressure bar(SHPB) simulation experiments. By means of applying five kinds of trapezoidal loads, the stress-strain curves of the concrete specimen at three different strain rate were obtained, afterwards a comparative analysis between the simulation results and experimental results was carried out. The results show that the model can be effectively applied in the SHPB simulation experiment of concrete and well reflect the dynamic mechanical behaviours. The corresponding macroscopic failure mode differs from the traditional homogeneous material model, which also provides references to the mesoscopic numerical simulation analysis of many other heterogeneous materials. The concrete aggregate models with different aggregate content and aggregate size were established, and the effects of aggregate volume fraction and dimension on the dynamic strength and stress uniformity of concrete specimen were studied.

Key words

split Hopkinson pressure bar (SHPB) / numerical simulation / mesoscopic aggregate model / random distribution / dynamic strength / stress uniformity

Cite this article

Download Citations
GUO Ruiqi1,2,REN Huiqi2,ZHANG Lei2,LONG Zhilin1,WU Xiangyun2,LI Zebin2. Simulation for SHPB tests based on a mesoscopic concrete aggregate model[J]. Journal of Vibration and Shock, 2019, 38(22): 107-116

References

[1] Groeneveld A B, Ahlborn T M, Crane C K, et al. Dynamic strength and ductility of ultra-high performance concrete with flow-induced fiber alignment[J]. International Journal of Impact Engineering, 2018, 111: 37-45.
[2] Xiong B, Demartino C, Xiao Y. High-strain rate compressive behavior of CFRP confined concrete: Large diameter SHPB tests[J]. Construction and Building Materials, 2019, 201, 484-501.
[3] 李明钊,张志刚,葛涛,等. 玄武岩纤维包裹混凝土圆形柱的抗冲击性能研究[J].振动与冲击,2016,35(22):215-220.
LI Mingzhao, ZHANG Zhigang, GE Tao, et al. Experiments on impact behaviors of BFRP confined concrete columns[J]. Journal of Vibration and Shock, 2016,35(22):215-220.
[4] 张玉武,晏麓晖,李凌锋. UHMWPE纤维混凝土动态压缩力学性能研究[J].振动与冲击,2017,36(08):92-96.
ZHANG Yuwu, YAN Luhui, LI Lingfeng. Dynamic compressive mechanical properties of UHMWPE fiber reinforced concrete[J]. Journal of Vibration and Shock, 2017,36(08):92-96.
[5] 巫绪涛, 杨伯源, 李和平,等. 大直径SHPB装置的数值模拟及实验误差分析[J]. 应用力学学报,2006,23(3):431-434.
WU Xutao, YANG Boyuan, LI Heping, et al. Numerical simulation and Error Analysis of Large Diameter SHPB[J]. Chinese Journal of Applied Mechanics, 2006, 23(3): 431-434.
[6] 巫绪涛, 孙善飞, 李和平. 用HJC本构模型模拟混凝土SHPB实验[J]. 爆炸与冲击, 2009, 29(2):137-142.
WU Xutao, DU Shanfei, LI Heping. Numerical simulation of the SHPB tests for concrete by using the HJC model[J]. Explosion and Shock Waves, 2009, 29(2): 137-142.
[7] 贾彬, 李正良, 陶俊林,等. 混凝土SHPB试验数值模拟研究[J]. 固体力学学报, 2010(s1):216-222.
JIA Bin, LI Zhengliang, TAO Junlin, et al. Research on numerical simulation of SHPB concrete tests[J]. Chinese Journal of Solid Mechanics, 2010(s1): 216-222.
[8] 余道兴, 宗周红, 李明鸿,等. 基于不同材料模型的混凝土SHPB试验数值模拟[J]. 东南大学学报(自然科学版), 2017, 47(1):124-129.
YU Daoxing, ZONG Zhouhong, LI Minghong, et al. Numerical simulation of concrete SHPB test based on different material models[J]. Journal of Southeast University (Natural Science), 2017, 47(1): 124-129.
[9] 焦楚杰, 李祯, 高乐. 混凝土SHPB试验的数值模拟[J]. 工程力学, 2010(s2):196-200.
JIAO Chujie, LI Zhen, GAO Le. Numerical simulation of SHPB test of concrete[J]. Engineering Mechanics, 2010(s2):196-200.
[10] 王礼立, 胡时胜, 杨黎明,等. 材料动力学[M]. 中国科学技术大学出版社, 2017.
WANG Lili, HU Shisheng, YANG Liming, et al. Kinetics of Materials[M]. Press of University of Science and Technology of China, 2017.
[11] Wittmann F H, Roelfstra P E, Sadouki H. Simulation and analysis of composite structures[J]. Materials Science & Engineering, 1985, 68(2):239-248.
[12] Sheng P, Zhang J, Ji Z. An advanced 3D modeling method for concrete-like particle-reinforced composites with high volume fraction of randomly distributed particles[J]. Composites Science & Technology, 2016, 134:26-35.
[13] 方秦, 张锦华, 还毅,等. 全级配混凝土三维细观模型的建模方法研究[J]. 工程力学, 2013, 30(1):14-21.
FANG Qin, ZHANG Jinhua, HUAN Yi, et al. The investigation into three-dimensional mesoscale modelling of fully-graded concrete[J]. Engineering Mechanics, 2013, 30(1):14-21.
[14] 郭瑞奇, 肖映雄, 唐现琼. 一种快速生成三维混凝土骨料模型的混合实现方法[J]. 土木建筑与环境工程, 2017,39(05):100-107.
GUO Ruiqi, XIAO Yingxiong, TANG Xianqiong. A fast hybrid realization method for three-dimensional concrete aggregate models[J]. Journal of Civil, Architectural & Environmental Engineering, 2017, 39(05): 100-107.
[15] 肖映雄, 郭瑞奇. 求解三维混凝土骨料模型分层高次元方程的多水平方法[J]. 应用力学学报, 2018, 35(06): 1260-1266.
XIAO Yingxiong, GUO Ruiqi. Multi-level method for the hierarchical higher-order finite element discretizations of 3D concrete aggregate models[J], Chinese Journal of Applied Mechanics, 2018,35(06): 1260-1266.
[16] 郭瑞奇. 三维混凝土骨料模型的p型自适应有限元及其快速求解算法[D]. 湘潭大学,2017.
GUO Ruiqi. The p-Version adaptive finite element methods and fast solving algorithms for 3D concrete aggregate models[D]. Xiangtan University, 2018.
[17] 金浏, 徐建东, 张仁波,等.钢筋混凝土梁抗冲击性能研究的细观数值模拟方法[J].振动与冲击,2018,37(02):57-65.
JIN Liu, XU Jiandong, ZHANG Renbo, et al. A mesoscale numerical simulation method for anti-impact performance of RC beams[J]. Journal of Vibration and Shock, 2018, 37(02):57-65.
[18] 刘志林, 孙巍巍, 王晓鸣.基于颗粒流离散元模型的弹丸侵彻细观混凝土数值模拟方法研究[J].振动与冲击,2016,35(04):162-169.
LIU Zhilin, SUN Weiwei, WANG Xiaoming. Numerical simulation for projectile penetrating meso-scale concrete based on particle flow discrete element model[J]. Journal of Vibration and Shock, 2016,35(04):162-169.
[19] Liang X , Wu C . Meso-scale modelling of steel fibre reinforced concrete with high strength[J]. Construction and Building Materials, 2018, 165:187-198.
[20] 方秦, 孔祥振, 吴昊,等. 岩石Holmquist-Johnson-Cook 模型参数的确定方法[J]. 工程力学, 2014, 31(3):197-204.
FANG Qin, KONG Zhenxiang, WU Hao, et al. Determination of Holmquist-Johnson- Cook constitutive model parameters of rock[J]. Engineering Mechanics, 2014, 31(3):197-204.
[21] 刘海峰, 韩莉. 冲击荷载作用下混凝土动态力学性能数值模拟研究[J]. 固体力学学报, 2015, 36(2): 145-153.
LIU Haifeng, HAN Li. Numerical simulation research on dynamic mechanical behaviors of concrete subjected to impact loading[J]. Chinese Journal of Solid Mechanics, 2015, 36(2): 145-153.
[22] 周风华, 王礼立, 胡时胜. 高聚物SHPB试验中试件早期应力不均匀性的影响[J]. 实验力学, 1992(1):23-29.
ZHOU Fenghua, WANG Lili, HU Shisheng, st al. The effects of stress non-uniformity in early stage for high polymer specimen in SHPB test[J]. Journal of Experimental Mechanics, 1992(1):23-29.
[23] Zencker U, Clos R. Limiting conditions for compression testing of flat specimens in the split hopkinson pressure bar[J]. Experimental Mechanics, 1999, 39(4):343-348.
[24] 姜锡权, 胡时胜. 霍普金森杆实验技术发展综述[C]// Hopkinson杆实验技术研讨会会议论文集, 2007.
JIANG Xiquan, HU Shisheng. Development review of  Hopkinson bar experimental technique[C]// Symposium of Hopkinson Bar Experimental Technique, 2007.
[25] 王礼立. 应力波基础-第2版[M]. 国防工业出版社, 2005.
WANG Lili. Foundation of stress wave-second edition[M]. National Defense Industry Press, 2005.
[26] 吕太洪, 陈小伟, 陈刚. 基于混凝土试件SHPB实验的波形特征分析[J]. 解放军理工大学学报(自然科学版), 2016, 17(4):345-349.
Lv Taihong, Chen Xiaowei, CHEN Gang. Waveform features of spl it Hopkinson pressure bar tests of concrete specimen[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2016, 17(4):345-349.
[27] 刘传雄, 李玉龙, 吴子燕,等. 混凝土材料的动态压缩破坏机理及本构关系[J]. 振动与冲击, 2011, 30(5):1-5.
LIU Chuanxiong, LI Yulong, WU Ziyan,et al. Failure mechanism and constitutive model of a concrete material under dynamic compressive loads[J]. Journal of Vibration and Shock, 2011, 30(5):1-5.
[28] Chen X, Wu S, Zhou J. Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete[J]. Construction and Building Materials, 2013, 47: 419-430.
[29] 王道荣,胡时胜.骨料对混凝土材料冲击压缩行为的影响[J].实验力学,2002(01):23-27.
WANG Daorong, HU Shisheng. Influence of Aggregate on the Compression Properties of Concrete under Impact[J]. Journal of Experimental Mechanics, 2002(01):23-27.
[30] Akçaoğlu T, Tokyay M, Çelik T. Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression[J]. Cement and Concrete Composites, 2004, 26(6): 633-638.
[31] 张磊, 吴建华, 高伟亮, 等.骨料尺寸对混凝土层裂强度的影响[J].实验力学, 2011,26(06): 730-734.
ZHANG Lei, WU Jianhua, GAO Weiliang, et al. On the Effect of Aggregate Size on Concrete Spalling Strength[J]. Journal of Experimental Mechanics, 2011,26(06): 730-734.
PDF(2735 KB)

Accesses

Citation

Detail

Sections
Recommended

/