Vibration and crack propagation control for cracked asymmetric rotor based on 3-D finite element model

LIU Jun1,2,HU Rong1,CHEN Jianen1,2,WANG Xiaofeng1,2

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (23) : 1-9.

PDF(1992 KB)
PDF(1992 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (23) : 1-9.

Vibration and crack propagation control for cracked asymmetric rotor based on 3-D finite element model

  • LIU Jun1,2,HU Rong1,CHEN Jianen1,2,WANG Xiaofeng1,2
Author information +
History +

Abstract

Aiming at vibration problems of a cracked asymmetric rotor, a 3-D finite element (FE) model for the rotor system was established using the nonlinear contact FE approach.The free interface modal synthesis method was used to reduce the model’s orders and computation time.Effects of related parameters on unstable zone of main resonance and those of different crack positions on the rotor’s vibration characteristics were analyzed through simulation analyses.The results showed that appearance of cracks can affect the rotor’s resonance frequency and unstable zone range; electromagnetic actuator (EMA) with fuzzy-PID control can be used to realize the active control of the rotor system’s vibration; based on the rotor dynamics theory and the crack open-close mapping method proposed here, effects of rotating speed, uneven mass and asymmetric rotor’s flatness on rotor crack’s open-close features were studied to propose the method effectively delaying crack propagation; test results reveal EMA can be used to suppress the cracked rotor’s vibration and crack breathing effect, and verify the effectiveness of the proposed control method.

Key words

cracked asymmetric rotor / 3-D finite element model / vibration control / delay crack propagation

Cite this article

Download Citations
LIU Jun1,2,HU Rong1,CHEN Jianen1,2,WANG Xiaofeng1,2. Vibration and crack propagation control for cracked asymmetric rotor based on 3-D finite element model[J]. Journal of Vibration and Shock, 2019, 38(23): 1-9

References

[1] Ghozlane M. Dynamic Response of Cracked Shaft in Rotor Bearing-Disk System[J]. Lecture Notes in Control & Information Sciences, 2015, 789:615-624.
[2] Ziaei-Rad S, Ghayour M, Ramezanpour R. Dynamic behavior of Jeffcott rotors with an arbitrary slant crack orientation on the shaft[J]. Applied & Computational Mechanics, 2012, 6(1).
[3] Silani M, Ziaei-Rad S, Talebi H. Vibration analysis of rotating systems with open and breathing cracks[J]. Applied Mathematical Modelling, 2013, 37(24):9907-9921.
[4] Ishida Y. Cracked rotors: Industrial machine case histories and nonlinear effects shown by simple Jeffcott rotor[J]. Mechanical Systems & Signal Processing, 2008, 22 (4):805-817.
[5] Sekhar A S. Some Recent Studies on Cracked Rotors[M]// IUTAM Symposium on Emerging Trends in Rotor Dynamics. Springer Netherlands, 2011:491-503.
[6] 谭蔚, 李怀民, 吴皓,等. 非对称转子动力学特性数值模拟[J]. 天津大学学报:自然科学与工程技术版, 2016, 49(6):603-609.
TAN Wei, LI Huai-min, WU Hao, et al. Numerical Study on the Dynamic Characteristics of Asymmetric Rotor System[J]. Journal
of Tianjin University, 2016, 49(6):603-609.
[7] Ishida Y, Inoue T, Liu J, et al. Vibrations of an Asymmetrical Shaft with Gravity and Nonlinear Spring Characteristics: Effect of Internal Resonance[J]. Journal of Vibration & Acoustics, 2008, 130(4): 178-187.
[8] Ishida Y,Ikeda T,Yamamoto T,et al. Effects of nonlinear spring characteristics on the dynamic unstable region of an unsymmetrical rotor[J]. Bulletin of JSME, 1986, 29(247): 200-207.
[9] 马威猛,王建军. 双重非对称转子支承系统实体有限元动力分析[J]. 振动与冲击, 2014, 33(23):9-14.
MA Wei-meng,WANG Jian-jun.Dynamic analysis method of an anisotropic and asymmetric rotor-bearing system based on 3D FEM[J]. JOURNAL OF VIBRATION AND SHOCK, 2014, 33(23):9-14.
[10]马威猛, 刘永泉, 王建军. 双重非对称转子支承系统建模分析方法研究[J]. 航空发动机, 2014, 40(6):1-7.
MA Wei-meng, LIU Yong-quan, WANG Jian-jun. Modeling and Analysis Methods of Anisotropic Asymmetric Rotor Bearing System[J]. Aeroengine,2014,40(6):1-7.
[11] Lazarus A, Prabel B, Combescure D. A 3D finite element model for the vibration analysis of asymmetric rotating machines[J]. Journal of Sound & Vibration, 2010, 329(18):3780-3797.
[12] Guo C, Al-Shudeifat M A, Yan J, et al. Stability analysis for transverse breathing cracks in rotor systems[J]. European Journal of Mechanics A/solids, 2013, 42(6):27-34.
[13] Grabowski B. The Vibrational Behavior of a Turbine Rotor Containing a Transverse Crack[J]. Journal of Mechanical Design, 1980, 102(1):140-146.
[14] Mayes I W, Davies W G R. Analysis of the Response of a Multi-Rotor-Bearing System Containing a Transverse Crack in a Rotor[J]. Reviews of Infectious Diseases, 1984, 6 Suppl 4(6):S909-23.
[15] 高建民, 朱晓梅. 转轴上裂纹开闭模型的研究[J]. 应用力学学报, 1992, 9(1): 108-12.
GAO Jian-min, ZHU Xiao-mei. Study on the model of the shaft crack opening and closing[J]. Chinese Journal of Applied Mechanics, 1992, 9(1): 108-112.
[16] Kulesza Z, Sawicki J T. Rigid finite element model of a cracked rotor[J]. Journal of Sound & Vibration, 2012, 331(18):4145-4169.
[17] Sharafi M M, Nikravesh M Y, Safarpour P. Analytical approach to calculate bending, longitudinal and torsional local stiffness of an asymmetric circumferential crack with contact condition[J]. Mechanical Systems & Signal Processing, 2017, 94:448-463.
[18] Liong R T, Proppe C. Application of the cohesive zone model for the evaluation of stiffness losses in a rotor with a transverse breathing crack[J]. Journal of Sound & Vibration, 2013, 332(8):2098-2110.
[19] Giannopoulos G I, Georgantzinos S K, Anifantis N K. Coupled vibration response of a shaft with a breathing crack[J]. Journal of Sound & Vibration, 2015, 336(336):191-206.
[20] Bhartiya Y, Sinha A. Reduced Order Model of a Multistage Bladed Rotor With Geometric Mistuning via Modal Analyses of Finite Element Sectors[C]// ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2012:939-948.
[21] Rosyid A, Elmadany M, Alata M. Optimal control of reduced-order finite element models of rotor-bearing-support systems[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2015, 37(5):1485-1497.
[22] Das A S, Dutt J K, Ray K. Active control of coupled flexural-torsional vibration in a flexible rotor–bearing system using electromagnetic actuator[J]. International Journal of Non-Linear Mechanics, 2011, 46(9):1093-1109.
[23] Ebrahimi A, Heydari M, Behzad M. Optimal Vibration Control of Rotors with an Open Edge Crack Using an Electromagnetic Actuator[J]. Journal of Vibration & Control, 2016.
[24] 姚剑飞,高金吉,王维民.电磁力参数自寻优的转子多频振动主动抑制[J].振动与冲击,2015, 34(18):45-50.
YAO Jian-fei, GAO Jin-ji, WANG Wei-min. Active suppression of multi-frequency vibration of rotor-bearing system through self-optimizing control[J]. JOURNAL OF VIBRATION AND SHOCK, 2015, 34(18):45-50.
[25] 时浩浩,吕洪波,孙启国.面向主动磁轴承不平衡振动问题的模糊PID控制[J].制造业自动化,2013, 35(20):43-45.
SHI Hao-hao, LV Hong-bo, SUN Qi-guo. Fuzzy-PID control for active magnetic bearing with unbalance vibration problem[J]. Manufacturing Automation, 2013, 35(20):43-45.
[26] 肖闽进, 张建生,钱显毅. 基于模糊自适应的主动磁悬浮系统稳定性控制[J].南京航空航天大学学报,2013, 45(3):390-395.
XIAO Min-jin, ZHANG Jian-sheng, QIAN Xian-yi. Stability control of active magnetic suspension system based on fuzzy adaptive[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 27(3): 390-395.
[27] Gong X, Cao D. Fuzzy proportional-integral-derivative control of an overhang rotor with double discs based on the active tilting pad journal bearing[J]. Journal of Vibration & Control, 2013, 19(10):1487-1498.
[28] Liu J, Fan Y, Wang L, et al. Research of the Delaying Crack Propagation on an Aero-Engine Rotor [J]. International Journal of Mechatronics and Automation, 2016, 5(4): 190-200.
[29] Craig R R J, Ni Z H. Component mode synthesis for model order reduction of non-classically damped systems[J]. Journal of Guidance Control & Dynamics, 1989, 12(12):577-584.
PDF(1992 KB)

627

Accesses

0

Citation

Detail

Sections
Recommended

/