A calculation method of structural response considering dynamic characteristics of damping materials

LIU Lan1,LIU Yunong1,2,LIU Chao1,LIU Geng1,WU Liyan1 YUE Yanjiong3

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (24) : 56-62.

PDF(1678 KB)
PDF(1678 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (24) : 56-62.

A calculation method of structural response considering dynamic characteristics of damping materials

  • LIU Lan1,LIU Yunong1,2,LIU Chao1,LIU Geng1,WU Liyan1   YUE Yanjiong3
Author information +
History +

Abstract

In order to accurately calculate the vibration response of an additional damping structure, a structural response calculation method which considers the dynamic characteristics of the damping materials was proposed, which can accurately extract the modal parameters and calculate the vibration responses of the additional damping structure.The material properties of damping materials are affected by the excitation frequency, which may cause the calculation of the vibration response inaccurate.Based on the traditional modal strain energy method, an improved modal strain energy method considering the dynamic characteristics of materials was established.The modal parameters of the composite structure were extracted accurately, which were verified by a modal test.Then the modal parameters were accurately substituted into the structural vibration response calculation.By comparing the acceleration frequency response curves of the observation points in simulation and experiment, the accuracy of the response calculation method was verified.The results show that the modal parameters of the additional damping structure can be accurately extracted and the vibration response of the structure can be calculated by this method.

Key words

additional damping structure / dynamic characteristics of damping materials / modal strain energy method / structural vibration response

Cite this article

Download Citations
LIU Lan1,LIU Yunong1,2,LIU Chao1,LIU Geng1,WU Liyan1 YUE Yanjiong3. A calculation method of structural response considering dynamic characteristics of damping materials[J]. Journal of Vibration and Shock, 2019, 38(24): 56-62

References

[1] 黄志诚, 秦朝烨, 褚福磊. 附加粘弹阻尼层的薄壁构件振动问题研究综述[J]. 振动与冲击, 2014, 33(7): 105-113.
HUANG Zhi-cheng, QIN Zhao-ye, CHU Fu-lei. A review about vibration problems of thin-walled structures with viscoelastic damping layer[J]. Journal of Vibration and Shock, 2014, 33(7): 105-113.
[2] 王正兴, 代会军. 粘弹性阻尼材料在板结构中的优化计算[J]. 噪声与振动控制, 2000(6): 18-21.
WANG Zheng-xin, DAI Hui-jun. An optimized computation for damping-elastic plank structure[J]. Noise and Vibration Control, 2000(6): 18-21.
[3] Ungar E E, Jr E M K. Loss Factors of Viscoelastic Systems in Terms of Energy Concepts[J]. The Journal of Acoustical Society of America, 1962, 34(7): 954-956.
[4] 谭峰. 粘弹性阻尼结构减振降噪分析及优化研究[D]. 上海: 上海交通大学, 2010.
TAN Feng. Analysis and optimization of viscoelastic damping structures in vibration and noise reduction[D]. Shanghai : Shanghai Jiao Tong University, 2010.
[5] Johnson C D, Kienholz D A. Finite Element Predication of Damping Beams with Constrained Viscoelastic Layer[J]. AIAA JOURNAL, 1981, 20(9): 1284-1290.
[6] 俞百录. 粘弹性材料在隔振工程上的应用[J]. 合肥工业大学学报(自然科学版), 1982(1), 36-48.
YU Bai-lu. The application of viscoelastic materials in vibration isolation engineering[J]. Journal of Hefei University of Technology (Natural Science), 1982(1), 36-48.
[7] Cura F, Mura A A, Scarpa F. Modal strain energy based methods for the analysis of complex patterned free layer damped plates[J]. Journal of Vibration and Control, 2011, 18(9): 1291–1302.
[8] Hujare P P, Sahasrabudhe A D, Chinchawade S D. Experimental and numerical analysis of the effect of segmentation on modal loss factor of constrained layer damped beam[C]// ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers. New York, USA: 2014. V008T11A090-V008T11A090.
[9] 杨瑞. 约束阻尼结构及舰船用减速器箱体的阻尼特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2014.
YANG Rui. Damping characteristics analysis of CLD structure and marine transmission box[D]. Harbin: Harbin Institute of Technology, 2014.
[10] Golla D F, Hughes P C. Dynamics of Viscoelastic Structures-A Time-Domain, Finite Element Formulation[J]. Journal of Applied Mechanics, 1986, 52(4): 897-906.
[11] Mctavish D J, Hughes P C. Modeling of linear viscoelastic space structures[J]. Asme Transactions Journal of Vibration Acoustics. 1993, 113(1): 103-110.
[12] Zghal S, Bouazizi M L, Bouhaddi N, et al. Model reduction methods for viscoelastic sandwich structures in frequency and time domains[J]. Finite Elements in Analysis and Design. 2015, 93: 12-29.
[13] 刘天雄, 华宏星, 陈兆能, 等. 约束层阻尼板的有限元建模研究[J]. 机械工程学报, 2002, 38(4): 108-114.
LIU Tian-xiong, HUA Hong-xing, CHEN Zhao-neng, et al. Study on the model of finite element of constrained layer damping plate[J]. Journal of mechanical engineering, 2002, 39(4): 108-114.
[14] 张洪才. ANSYS 14.0理论解析与工程应用实例[M]. 北京: 机械工业出版社, 2012.
[15] 吴晴晴, 王敏庆. 考虑基底层阻尼的自由阻尼结构损耗因子修正公式[J]. 振动与冲击, 2014, 33(13):204-209.
Wu Qing-qing, Wang Min-qing. Modified loss factor formulas for UD structures with consideration of base layer's damping[J]. Journal of Vibration and Shock, 2014, 33(13):204-209.
[16] 郭雪莲, 范雨, 李琳, 等. 航空发动机叶片高频模态阻尼的实验测试方法[J]. 航空动力学报, 2014, 29(9): 2104-2112.
GUO Xue-lian, FAN Yu, LI Lin, et al. Experimental test method for high-frequency modal damping of turbomachinery blades[J]. Journal of Aerospace Power, 2014, 29(9): 2104-2112.
[17] 尹帮辉, 王敏庆, 吴晓东. 结构振动阻尼测试的衰减法研究[J]. 振动与冲击, 2014, 33(4):100-106.
YIN Bang-hui, WANG Min-qing, WU Xiao-dong. Decay method for measuring structural vibration damping[J]. Journal of Vibration and Shock, 2014, 33(4):100-106.
[18] 赵子龙. 振动力学[M]. 国防工业出版社, 2014.
[19] 宗福开. 带约束粘弹性阻尼层结构的动态模型[J]. 江苏化工学院学报, 1989, 1(3): 43-53.
ZONG Fu-kai. Dynamical models of the structures with constrained viscoclastic damped layers[J]. Journal of Jiangsu Institute of Chemical Technology, 1989, 1(3):43-53.
 
 

PDF(1678 KB)

442

Accesses

0

Citation

Detail

Sections
Recommended

/