Analysis of frequency spectrum and the Fourier series convergence of the unit impulse train

DU Feng 1 TANG Lan 2

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (4) : 15-19.

PDF(579 KB)
PDF(579 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (4) : 15-19.

Analysis of frequency spectrum and the Fourier series convergence of the unit impulse train

  •  DU Feng 1   TANG Lan 2
Author information +
History +

Abstract

According to the shift theorem in the time and frequency domain,the unit impulse train has two frequency spectrum functions which were called the periodic spectrum and the series spectrum.The periodic spectrum is not rigorous for the lack of the analysis of the Fourier series convergence.According to the definition of the Dirac function,it proved that the series spectrum is in fact an impulse train in the frequency domain whose energy and period are equal to the angular frequency value.The sampling function characteristic,the limit and integral theory were made full use of.It shows that the Fourier series of the unit impulse train is convergent.The convergence was verified again by the analyses about the difference between the series spectrum and the Fourier series of the periodic spectrum.It failed to verify the miss of the Gibbs phenomenon.

Key words

unit impulse train / frequency spectrum / Fourier series convergence / Gibbs phenomenon

Cite this article

Download Citations
DU Feng 1 TANG Lan 2. Analysis of frequency spectrum and the Fourier series convergence of the unit impulse train[J]. Journal of Vibration and Shock, 2019, 38(4): 15-19

References

[1] 秦毅,郭磊,吴宏钢.冲击振动提取的优化稀疏表征方法[J].振动与冲击, 2016,35(01): 54-58.
QIN Yi, GUO Lei, WU Hong-gang. Optimal sparse representation method for impact vibration extraction[J]. Journal of Vibration and Shock, 2016, 35(01): 54-58.
[2] 杜峰,葛晓成,陈翔,等.路面功率谱密度换算及不平度建模理论研究[J].振动.测试与诊断, 2015, 35(05): 981-986.
DU Feng, GE Xiao-cheng, CHEN Xiang, et al. Conversion of spatial power spectral density and study on road irregularity modeling theory [J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(5): 981-986.
[3] 方建超,毛雪松.非等间隔采样信号傅里叶频谱分析方法[J].计算机应用, 2016, 36(02): 492-494.
FANG Jian-chao, MAO Xue-song. Fourier spectrum analysis for non-uniform sampled signals [J]. Journal of Computer Applications, 2016, 36(02): 492-494.
[4] DU Feng. Frequency Weighting Filter Design for Automotive Ride Comfort Evaluation[J]. Chinese Journal of Mechanical Engineering, 2016, 29(4): 727-738.
[5] 王宝祥.信号与系统(第四版)[M]. 北京:高等教育出版社,北京,2015.
[6] 郑君里.信号与系统(第三版)[M]. 北京:高等教育出版社,北京,2011.
[7] 宫二玲,孙志强,刘亚东.从非周期信号的FT到周期信号的FS[J]. 电气电子教学学报, 2015,37(06): 42-44.
GONG Er-ling, SUN Zhi-jian, LIU Ya-dong. From the Fourier transform of non-periodic signals to the Fourier series of periodic signals[J]. Journal of Electrical & Electronic Education, 2015, 37(06): 42-44.
[8] 刘涤尘,熊元新.冲激抽样信号傅里叶变换的分析[J].武汉水利电力大学学报, 1997,30(01): 62-63.
LIU Di-chen, XIONG Yuan-xin. Analysis on impulse sample signal Fourier transform[J]. Engineering Journal of Wuhan University, 1997, 30(01): 62-63.
[9]熊元新,刘涤尘.周期冲激函数与黎曼引理[J].华中师范大学学报(自然科学版), 2001,35(01): 24-26.
XIONG Yuan-xin, LIU Di-chen. Period impulse function and Riemann lemma[J]. Journal of Central China Normal University(Natural Sciences), 2001, 35(01): 24-26.
[10]熊元新,刘涤尘.傅里叶级数的收敛性与吉伯斯现象[J].武汉大学学报(工学版), 2001,34(01): 69-71.
XIONG Yuan-xin, LIU Di-chen. Convergence of Fourier series and Gibbs phenomenon[J]. Engineering Journal of Wuhan University, 2001, 34(01): 69-71.
[11] 吴亚敏.单位冲激函数的性质[J].太原师范学院学报(自然科学版), 2015, 14(01): 13-16.
WU Ya-min. The nature of the unit impulse function[J]. Journal of Taiyuan Normal University(Natural Science Edition) , 2015, 14(01): 13-16.
[12] 同济大学数学系.高等数学(下册)(第七版)[M]. 北京:高等教育出版社,北京,2014
PDF(579 KB)

826

Accesses

0

Citation

Detail

Sections
Recommended

/