Sliding mode robust control of a bearingless induction motor suspension system based on the HJI theory

SUN Yuxin,TANG Jingwei,ZHU Huangqiu,SHI Kai

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (4) : 50-55.

PDF(1317 KB)
PDF(1317 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (4) : 50-55.

Sliding mode robust control of a bearingless induction motor suspension system based on the HJI theory

  • SUN Yuxin,TANG Jingwei,ZHU Huangqiu,SHI Kai
Author information +
History +

Abstract

To realize the dynamic decoupling control of a bearingless induction motor suspension system,a sliding mode robust control method based on the HJI (Hamilton-Jaeobi-Issaes) theory for a bearingless induction motor suspension system was proposed.In modeling the suspension system,the system uncertainty and the external disturbance were considered,and the stability of the control system was ensured by satisfying the HJI inequality robust condition by designing an appropriate sliding mode control law.Finally,the method realizes the dynamic decoupling control of the bearingless induction motor suspension system and improves the stability and anti-disturbance performance of the system.Simulation and experimental results show the effectiveness of the method,which can realize the decoupling control of two degrees of freedom bearingless motor.

Key words

 bearingless induction motor / suspension system / decoupling control / Hamilton-Jacobi-Isaacs inequality / sliding mode robust control

Cite this article

Download Citations
SUN Yuxin,TANG Jingwei,ZHU Huangqiu,SHI Kai. Sliding mode robust control of a bearingless induction motor suspension system based on the HJI theory[J]. Journal of Vibration and Shock, 2019, 38(4): 50-55

References

[1] 孙宇新, 钱忠波. 数控机床高速无轴承异步电动机悬浮子系统RBFNN逆独立解耦控制[J]. 振动与冲击, 2016, 35(21):196-202.
SUN Yuxin, QIAN Zhongbo. Independent RBFNN inverse decoupling control of the levitation subsystem of bearingless induction motor for NC machine [J]. Journal of Vibration and Shock, 2016, 35(21): 196-202.
[2] 杨泽斌, 董大伟, 孙晓东,等. 基于坐标变换的无轴承异步电机转子振动前馈补偿控制[J]. 中南大学学报(自然科学版) [J], 2016, 47(5):1543-1550.
YANG Zebin, DONG Dawei, SUN Xiaodong et al. Rotor vibration feedforward compensation control in bearingless induction motor based on coordinate transformation [J]. Journal of Central South University(Science and Technology). 2016, 47(5):1543-1550.
[3] KOBAYASHI S, OOSHIMA M, UDDIN M N. A radial position control of bearingless motor based on d-q-axis current control [J]. IEEE Transactions on Industry Applications, 2013, 49(4): 1827-1835
[4] 卜文绍,乔岩珂,祖从林,等. 三相无轴承异步电机的磁场定向控制[J]. 电机与控制学报,2012,16(7):52-57.
Bu Wenshao, Qiao Yanke, Zu Conglin, et al. Flux orientation control of three-phase bearingless induction motor [J]. Electric Machines and Control, 2012, 16(7): 52-57.
[5] 邓智泉, 王晓琳, 张宏荃, 等. 无轴承异步电机的转子磁场定向控制[J]. 中国电机工程学报, 2003, 23(3): 89-92.
DENG Zhiquan, WANG Xiaolin, ZHANG Hongquan, et al. The nonlinear control of bearingless induction motors based on the motor rotor flux orientation [J]. Proceedings of the CSEE, 2003, 23(3): 89-92.
[6] BU W S, LU C X, ZU C L, et al. Research on dynamic decoupling control method of three-phase bearingless induction motor [J]. International Journal of Control and Automation, 2014, 7(5): 77-86.
[7] Bu W, Cheng X, He F, et al. Inverse system modeling and decoupling control of bearingless induction motor based on air gap flux orientation [J]. International Journal of Applied Electromagnetics & Mechanics, 2017:1-11.
[8] 王正齐, 刘贤兴. 基于神经网络逆系统的无轴承异步电机非线性内模控制[J]. 自动化学报, 2013, 39(4): 433-439.
WANG Zhengqi, LIU Xianxing. Nonlinear internal model control for bearingless induction motor based on neural network inversion [J]. Acta Automatica Sinica, 2013, 39(4): 433-439.
[9] Sun Xiaodong, Zhu Huangqiu. Artificial neural networks inverse control of 5 degrees of freedom bearingless induction motor[ J]. International Journal of Modeling, Identification and Control, 2012, 15(3): 156-163.
[10] 孙宇新, 杨玉伟. 无轴承异步电机悬浮系统的非线性滤波器自适应逆控制 [J]. 控制理论与应用, 2016, 33(3):304-310.
SUN Yuxin YANG Yuwei Adaptive inverse control for levitation system of bearingless induction motors based on nonlinear filters [J] Control Theory & Applications, 2016, 33(3): 304-310.
[11] Mao J F, Wu G Q, Wu A H, et al. Nonlinear Decoupling Sliding Mode Control of Permanent Magnet Linear Synchronous Motor Based on α-th Order Inverse System Method[J]. Procedia Engineering, 2011, 15:561-567.
[12] Bu W S, Zu C L, Lu C X, et al. Decoupling Control Strategy of Three-Phase Bearingless Induction Motor[J]. Applied Mechanics & Materials, 2014, 435:1154-1160.
[13] Oliveira C M R, Aguiar M L, Monteiro J R B A, et al. Vector Control of Induction Motor Using an Integral Sliding Mode Controller with Anti-windup [J]. Journal of Control Automation & Electrical Systems, 2016, 27(2):169-178.
[14] Yang Z, Wan L, Sun X, et al. Sliding Mode Variable Structure Control of a Bearingless Induction Motor Based on a Novel Reaching Law [J]. Energies, 2016, 9(6):452.
[15] 朱熀秋, 沈玉祥, 张腾超,等. 无轴承异步电机数学模型与解耦控制[J]. 电机与控制学报, 2007, 11(4):321-325.
ZHU Huangqiu, SHEN Yuxiang, ZHANG Tengchao, et al Mathematics model and decoupling control for self-bearing induction motors [J]. Electric Machines and Control, 2007, 11(4):321-325
[16] Barbu V, Colli P, Gilardi G, et al. Sliding mode control for a nonlinear phase-field system [J]. Mathematics, 2015.
[17] Chiba A, Power D T, Rahman M A. Characteristics of a bearingless induction motor [J]. IEEE Transactions on Magnetics ,1991, 27(6):5199-5201.
[18] Sun X, Chen L, Yang Z, et al. Speed-Sensorless Vector Control of a Bearingless Induction Motor With Artificial Neural Network Inverse Speed Observer [J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4):1357-1366.
[19] Yang X, Liu D, Ma H, et al. Online approximate solution of HJI equation for unknown constrained-input nonlinear continuous-time systems [J]. Information Sciences, 2016, 328(C):435-454.
[20] D. Doncker, R. W. Novotny. The universal field oriented (UFO) controller [J]. IEEE Trans. Industry Applications, 1994, 30(1): 92-100.
[21] Jannati M, Idris N R N, Aziz M J A. Vector Control of Star-Connected 3-Phase Induction Motor Drives under Open-Phase Fault Based on Rotor Flux Field-Oriented Control [J]. 2016, 44(20):2325-2337.
PDF(1317 KB)

Accesses

Citation

Detail

Sections
Recommended

/