Stress wave attenuation characteristics of periodic layered tube structures under impact loadings

LI Yinggang1, 2, ZHOU Lei2, ZHU Ling2, GUO Kailing2

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (5) : 124-127.

PDF(1380 KB)
PDF(1380 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (5) : 124-127.

Stress wave attenuation characteristics of periodic layered tube structures under impact loadings

  • LI Yinggang1, 2, ZHOU Lei2, ZHU Ling2, GUO Kailing2
Author information +
History +

Abstract

Here, dynamic behavior, stress wave propagation and attenuation characteristics of periodic layered tubes under impact loadings were investigated with the split Hopkinson pressure bar (SHPB) device combining with the finite element numerical simulation. Based on the solid lattice energy band theory, periodic layered tube structures’ band gap characteristics were studied to clarify the relation between energy band structure and stress wave frequency spectrum’s attenuation region and analyze the effects of layered tubes’ material and structural parameters on band gap. Results showed that the periodic layered tube structures possess good impact stress wave attenuation characteristics and anti-impact performance; their impact stress wave attenuation characteristics are mainly caused by their band gap ones; layered tubes’ material and structural parameters can effectively regulate the frequency range and width of band gap. The study results provided a new idea for anti-blast and anti-impact engineering.

Key words

Periodic layered tubes / Stress wave attenuation / Impact resistance / Band gaps / SHPB

Cite this article

Download Citations
LI Yinggang1, 2, ZHOU Lei2, ZHU Ling2, GUO Kailing2. Stress wave attenuation characteristics of periodic layered tube structures under impact loadings[J]. Journal of Vibration and Shock, 2019, 38(5): 124-127

References

[1] Lu G, Yu T X. Energy absorption of structures and materials[M]. Elsevier, 2003.
[2] Zhang X, Cheng G, You Z, et al. Energy absorption of axially compressed thin-walled square tubes with patterns[J]. Thin-Walled Structures, 2007, 45(9): 737-746.
[3] Zhang X, Cheng G, Zhang H. Theoretical prediction and numerical simulation of multi-cell square thin-walled structures[J]. Thin-Walled Structures, 2006, 44(11): 1185-1191.
[4] Zhang X, Zhang H, Wen Z. Axial crushing of tapered circular tubes with graded thickness[J]. International Journal of Mechanical Sciences, 2015, 92: 12-23.
[5] Zhang H, Zhang X. Crashworthiness performance of conical tubes with nonlinear thickness distribution[J]. Thin-Walled Structures, 2016, 99: 35-44.
[6] 罗昌杰, 刘荣强, 邓宗全, 等. 泡沫铝填充薄壁金属管塑性变形缓冲器吸能特性的试验研究[J]. 振动与冲击, 2009, 28(10): 26-30.
LUO Changjie, LIU Rongqiang, DENG Zongquan, et al. Experimental studies on a plastic deformation energy absorber filled with aluminum foam in a thin-walled metal tube[J].Journal of Vibration and Shock, 2009, 28(10): 26-30.
[7] 袁潘, 杨智春. 复合材料/铝复合管轴向准静态及冲击压溃的吸能特性[J]. 振动与冲击, 2010, 29(8): 209-213.
Yuan Pan, Yang Zhichun. Numerical study on the energy absorption of aluminum-composite hybrid tubes under axial quasi-static and impact crushing[J]. Journal of Vibration and Shock, 2010, 29(8): 209-213.
[8] 程涛, 向宇, 李健, 等. 泡沫铝填充多棱管的吸能分析[J]. 振动与冲击, 2011, 30(9): 237-242.
Cheng Tao, Xiang Yu, Li Jian, et al. The energy absorption analysis of foamed aluminum-filled prisms[J]. Journal of Vibration and Shock, 2011, 30(9): 237-242.
[9] Yin H, Wen G, Liu Z, et al. Crashworthiness optimization design for foam-filled multi-cell thin-walled structures[J]. Thin-Walled Structures, 2014, 75: 8-17.
[10] Siromani D, Awerbuch J, Tan T M. Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression[J]. Composites Part B: Engineering, 2014, 64: 50-58.
[11] 陈亚枫, 白中浩. 泡沫填充多边形单锥管与双锥管斜向加载下耐撞性分析[J]. 振动与冲击, 2017, 36(6): 18-26.
Chen Yafeng, Bai Zhonghao. Crashworthiness analysis of foam-filled single and bitubal polygonal tapered thin-walled tubes under oblique impact loading[J]. Journal of Vibration and Shock, 2017, 36(6): 18-26.
[12] 高强, 王良模, 王源隆, 等. 椭圆形泡沫填充薄壁管斜向冲击吸能特性仿真研究[J]. 振动与冲击, 2017, 36(2): 201-206.
GAO Qiang,WANG Liang-mo,WANG Yuan-long, et al. Energy-absorbing characteristics of foam-filled oval tube under oblique impact[J]. Journal of Vibration and Shock, 2017, 36(2): 201-206.
[13] 温熙森. 声子晶体[M]. 国防工业出版社, 2009.
WEN Xisen. Phononic crystals[M]. National Defense Industry Press, 2009.
[14] Li Y, Chen T, Wang X, et al. Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot[J]. Physica B: Condensed Matter, 2015, 456: 261-266.
PDF(1380 KB)

431

Accesses

0

Citation

Detail

Sections
Recommended

/