Gear fault diagnosis based on information fusion and stacked de-noising auto-encoder

LI Songbai, KANG Zijian, TAO Jie

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (5) : 216-221.

PDF(1425 KB)
PDF(1425 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (5) : 216-221.

Gear fault diagnosis based on information fusion and stacked de-noising auto-encoder

  • LI Songbai, KANG Zijian, TAO Jie
Author information +
History +

Abstract

Aiming at problems of traditional classifiers being susceptible to noise interference and a single sensor’s reliability and fault tolerance being not good, a gear fault diagnosis method based on multi-sensor information fusion and stacked de-noising auto-encoder (SDAE) was proposed. Firstly, multi-sensor vibration time domain signals were extracted to do data level fusion. Then SDAE was used to extract features layer by layer. Finally, labeled data was used to do the overall fine-tuning of the deep learning network and establish a gear state monitoring model. The fault diagnoses were conducted for different faulty gears, and diagnosis correctness and robustness of SDAE, SVM and BPNN were compared. The results showed that the gear fault diagnosis accuracy rate of SDAE based on information fusion reaches 95.17%, it is higher than that of the single signal classifier; the proposed method’s robustness is superior to those of other methods compared with the former.

Key words

 information fusion / stacked denoising auto-encoder / deep learning / gear / fault diagnosis

Cite this article

Download Citations
LI Songbai, KANG Zijian, TAO Jie. Gear fault diagnosis based on information fusion and stacked de-noising auto-encoder[J]. Journal of Vibration and Shock, 2019, 38(5): 216-221

References

[1] 蒋玲莉, 刘义伦, 李学军, 陈安华. SVM与多振动信息融 合的齿轮故障诊断[J]. 中南大学学报(自然科学版), 2010,  (06): 2184-2188.
 JIANG Ling-li, LIU Yi-lun, LI Xue-jun, CHEN An-hua.  
 Gear fault diagnosis based on SVM and multi-sensor  information fusion[J]. Journal of  Central South University  (Science and Technology), 2010, (06): 2184-2188.
[2] 程军圣, 杨怡, 杨宇. 基于LMD的谱峭度方法在齿轮故障 诊断中的应用[J]. 振动与冲击, 2012, 31(18): 20-23.
 CHENG Jun-sheng, YANG Yi, YANG Yu. Application of  spectral kurtosis approach based  on local mean  decomposition in gear fault  diagnosis[J].Journal Of  Vibration And Shock,  2012, 31(18): 20-23.
[3] Soualhi A, Medjaher K, Zerhouni N. Bearing Health  Monitoring Based on Hilbert–Huang Transform, Support  Vector Machine, and  Regression[J].IEEE Transactions on  Instrumentation & Measurement, 2015, 64(1): 52-62
[4] 王皓, 周峰. 基于小波包和BP神经网络的风机齿轮箱故 障诊断[J]. 噪声与振动控制, 2015, 35(2): 154-159.
 WANG Hao, ZHOU Feng. Fault Diagnosis of Wind Turbine  Gearbox Based on Wavelet Packet and Back  Propagation  Neural Network[J]. Noise and Vibration Control, 2015,  35(2): 154-159.
[5] 张超, 陈建军, 郭迅. 基于EEMD能量熵和支持向量机的 齿轮故障诊断方法[J]. 中南大学学报(自然科学版),  2012,  (03): 932-939.
 ZHANG Chao, CHEN Jiang-jun, GUO Xun. Gear fault  diagnosis method based on ensemble empirical mode  decomposition energy entropy and support vector  machine[J]. Journal of Central South University (Science and  Technology), 2012, (03): 932-939.
[6] HINTON G E, OSINDERO S, TEH Y W. A fast learning  algorithm for deep belief nets[J].  Neural Computation,  2006,18(7): 1527-1554.11
[7] Vincent P, Larochelle H, Lajoie I, et al. Stacked Denoising  Autoencoders: Learning Useful Representations in a Deep  Network with a Local Denoising Criterion[J]. Journal of  Machine Learning Research, 2010, 11(12):3371-3408.
[8] LU  Chen, WANG Zhen-ya, QIN Wei-li, et al. Fault  diagnosis  of rotary machinery components  using a stacked  denoising  autoencoder-based health state identification[J].  Signal Processing, 2017, 130(C):377-388.
[9] Llinas J, Hall D L. An introduction to multi-sensor data  fusion[C]// Proceedings of IEEE International Symposium on  Circuits and Systems. Monterey, CA: IEEE, 1998, 6(1): 6-23. [10] 朱大奇, 刘永安. 故障诊断的信息融合方法[J]. 控制与 决 策, 2007, 22(12): 1321-1328.
 ZHU Da-qi, LIU Yong-an. Information fusion method for  fault diagnosis[J]. Control and Decision, 2007,22(12):  1321-1328.
[11] 韩崇昭, 朱洪艳, 段战胜, 等. 多源信息融合 [M]. 4版.  北京: 清华大学出版社, 2010: 4-11.
 HAN Chong-zhao, ZHU Hong-yan, DUAN Zhan-sheng, et al.   Multi-source information fusion. [M]. 4th ed. Beijing:  Tsinghua  University Press, 2010: 4-11.
[12] Bengio Y. Learning Deep Architectures for AI[J].  Foundations & Trends® in Machine Learning, 2009,  2(1):1-127.
[13] Vincent P, Larochelle H, Bengio Y, et al. Extracting and  composing robust features with denoising autoencoders[C]//  International Conference on Machine Learning. ACM,  2008:1096-1103.
[14] 雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备 大数据健康监测方法[J]. 机械工程学报, 2015, 51(21):   49-56.
 LEI Ya-guo, JIA Feng, ZHOU Xin, et al. A Deep  Learning-based Method for Machinery Health  Monitoring with Big Data[J]. Journal of Mechanical  Engineering, 2015, 51(21): 49-56.
[15] 曲建岭, 杜辰飞, 邸亚洲,等. 深度自动编码器的研究与展 望[J]. 计算机与现代化, 2014(8): 128-134.
 QU Jian-ling, DU Chen-fei, QIU Ya-zhou, Research and  Prospect of Deep Auto-encoders[J]. Computer and  Modernization, 2014(8): 128-134.
[16] Ioffe S, Szegedy C. Batch Normalization: Accelerating  Deep Network Training by  Reducing  Internal Covariate  Shift version3.0  [EB/OL].   https://arxiv.org/pdf/1502.03167.pdf  [2015-03-02].
[17] 向阳辉. 基于信息融合技术的旋转机械故障诊断研究[D].  中南大学, 2007. 
     XIANG Yang-hui. Fault Diagnosis of Rotating Machine  Based on Information Fusion[D].  Central South University,  2007
[18] LEI Ya-guo, ZUO Ming. Gear crack level International  identification based on weighted K nearest neighbor  classification algorithm[J]. Mechanical Systems and Signal  Processing, 2009, 23(5): 1535-1547.
PDF(1425 KB)

1382

Accesses

0

Citation

Detail

Sections
Recommended

/