Performances of a novel pendulum for measuring ship low-middle frequency pseudo-velocity spectrums

ZHAO Pengduo1, ZENG Ze-cui 1,2,ZHANG Lei1,2, YAN Ming2

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (6) : 1-6.

PDF(1998 KB)
PDF(1998 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (6) : 1-6.

Performances of a novel pendulum for measuring ship low-middle frequency pseudo-velocity spectrums

  • ZHAO Pengduo1, ZENG Ze-cui 1,2 , ZHANG Lei1,2, YAN Ming2
Author information +
History +

Abstract

Aiming at verifying the low-middle frequency pseudo-velocity spectrums measured by piezoeletric accelerater and replacing the conventional low-frequency oscillator and reed, a novel measuring pendulum was proposed. The equation of motion of the measuring pendulum was derived. The Ritz-Galerkin method was used to solve the equation to obtain the modal frequency, and the Duhamel integral method was used to obtain the maximum angle response of the system. To verify the analysis method, the finite element software ANSYS was used to calculate the modal frequency and maximum angle response. The performance of a measuring pendulum prototype was tested on a vibration excitation platform. The results demonstrate that the measuring pendulum can well verify the low-middle frequency pseudo-velocity spectrums measured by piezoeletric accelerater. It has the smaller volume than the low-frequency oscillator and the larger measuring frequency field than the reed.

Key words

pseudo-velocity spectrum / low frequency oscillator / measuring pendulum / Ritz-Galerkin method

Cite this article

Download Citations
ZHAO Pengduo1, ZENG Ze-cui 1,2,ZHANG Lei1,2, YAN Ming2. Performances of a novel pendulum for measuring ship low-middle frequency pseudo-velocity spectrums[J]. Journal of Vibration and Shock, 2019, 38(6): 1-6

References

[1] 汪  玉, 华宏星. 舰船现代冲击理论及应用[M]. 北京:科学出版社, 2005.
WANG Yu, HUA Hong-xing. Theory and Application of Ship's Modern Shock [M]. BEI Jing: Science Press, 2005.
[2] Broch J T. Mechanical vibration and shock measurements[M]. Denmark: Brüel & Kjær press, 1980.
[3] 都军民, 戴宗妙. 冲击响应谱在冲击试验中的应用研究[J].舰船科学技术, 2007, 29(A01): 19-21.
DU Jun-min, DAI Zong-miao. Study of shock response spectrum applied in shock experiment [J]. Ship Science and Technology, 2007, 29(A01): 19-21.
[4] 李  杰,刘  俊.制导弹药用微惯性测量单元结构设计[J]. 兵工学报, 2013, 34(6): 711-717.
LI Jie, LIU Jun. Design of micro-electromechanical systems inertial measurement unit Structure for guided ammunition [J]. Acta Armamentarii, 2013, 34(6): 711-717.
[5] 吴祖堂, 杨德猛, 邹  虹. 压电加速度传感器冲击测量中低频失真的理论分析与实验验证[J].传感技术学报, 2010, 23(11): 1586-1589.
WU Zu-tang, YANG De-meng, ZOU Hong. Theoretical analysis and validation of low frequency distortion of piezoelectricity accelerometer for shock measurement [J]. Chinese Journal of Sensors and Actuators
[6] 夏伟强, 马铁华, 范锦彪, 等.压电式加速度传感器在高冲击环境下的零漂分析[J].传感技术学报, 2007, 20(7): 1522-1527.
XIA Wei-qiang, MA Tie-hua, FAN Jin-biao, et al. Analysis of zero-drift of the piezoelectric acceleration sensor in high-impact testing [J]. Chinese Journal of Sensors and Actuators, 2007, 20(7):1522-1527.
[7] Xia W, Fan S, Xing W, et al. Restraining zero drift in an ultrahigh-g impact environment [J]. Measurement Science and Technology, 2012, 23(3): 035108.
[8] Kwon J I, Lee S G, Chung J H. Shock response analysis of MIL-S-901D floating shock platform [J]. Journal of the Society of Naval Architects of Korea, 2005, 42(5): 493-498.
[9] Kwon J I, Lee S G, Chung J H. Numerical simulation of MIL-S-901D heavy weight shock test of a double resiliently mounted main engine module [J]. Journal of the Society of Naval Architects of Korea, 2005, 42(5): 499-505.
[10] 潘建强, 唐佳炜, 张克明. 簧片式冲击谱测量仪电测技术[J]. 应用科技, 2010, 37(11): 14-17.
PAN Jian-qiang, TANG Jia-wei, ZHANG Ke-ming. The electromotive technology based on sheet metal-spring which is used to measure shock spectrum [J]. Applied Science and Technology, 2010, 37(11): 14-17.
[11] 高  鹏, 孟宪松, 赵鹏铎, 等. 低频振子设计及其冲击响应试验分析[J]. 噪声与振动控制, 2016, 36(4):202-205.
GAO Peng, MENG Xian-song, ZHAO Peng-duo, et al. Design of a low frequency vibrator and analysis of its shock response experiment [J]. Noise and Vibration Control, 2016, 36(4): 202-205.
[12] 闫  明, 曾泽璀, 王玉生. 振荡与摩擦对横向冲击试验台的波形影响分析[J]. 机械设计与制造, 2015(08): 39-41.
YAN Ming, ZENG Ze-cui, WANG Yu-sheng. The Impact Analysis of Waveform Produced by the Vibration and Friction Impacted on the Lateral Impact Table [J]. Machinery Design & Manufacture, 2015(08):39-41.
[13] 刘建湖,潘建强,何 斌.各主要海军国家设备抗冲击标准之比较[J]. 应用科技, 2010, 37(09): 17-25.
LIU Jian-hu, PAN Jian-qiang, HE Bin. Comparison of anti-shock criteria for equipment in some primary navy countries [J]. Applied Science and Technology, 2010, 37(09): 17-25.
[14] 王  军, 郭  君, 姚熊亮, 等.浮动冲击平台对应实船冲击环境判别分析[J].振动与冲击, 2014, 33(6): 107-112.
WANG Jun, GUO Jun, YAO Xiong-liang, et al. Discriminant analysis on the shock environment of floating shock platform as opposed to real ship [J]. Journal of Vibration and Shock, 2014, 33(6): 107-112.
[15] 李国华, 李玉节. 浮动冲击平台水下爆炸冲击谱测量与分析[J]. 船舶力学, 2000, 4(2): 560.
LI Guo-hua, LI Yu-jie. Shock spectrum measurement and analysis of underwater explosion on a floating shock platform [J]. JOURNAL OF SHIP MECHANICS, 2000, 4(2): 560.
PDF(1998 KB)

Accesses

Citation

Detail

Sections
Recommended

/