A force-displacement compound control method based on the vector form intrinsic finite element method

QU Ji ting, HU Qiang, SONG Quan bao

Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (8) : 188-192.

PDF(1396 KB)
PDF(1396 KB)
Journal of Vibration and Shock ›› 2019, Vol. 38 ›› Issue (8) : 188-192.

A force-displacement compound control method based on the vector form intrinsic finite element method

  • QU Ji ting, HU Qiang, SONG Quan bao
Author information +
History +

Abstract

Vector form intrinsic finite element (VFIFE) is a new numerical analytical method based on vector mechanics and point value description.This method has a great advantage in solving the problems of structural nonlinear discontinuity, such as large deformation, large displacement, fracture and collision, and the dynamic prediction of mechanism.According to the method of force control and displacement control in structural tests, a method of force-displacement compound control was put forward and an analytical model was established based on the VFIFE method in this paper.This compound control method includes an alternating force-displacement control method and a force-displacement mixed control method.On this basis, the large deformation of a structure was solved, and a numerical example was given to verify the proposed method.

Key words

vector form intrinsic finite element / force control method / Displacement control method / nonlinear analysis / large deformation.

Cite this article

Download Citations
QU Ji ting, HU Qiang, SONG Quan bao. A force-displacement compound control method based on the vector form intrinsic finite element method[J]. Journal of Vibration and Shock, 2019, 38(8): 188-192

References

[1]  Ting, E.C., Shih, C. and Wang, Y.K. “Fundamentals of a vector form intrinsic finite element: Part I. Basic procedure and a plane frame element”, Journal of Mechanics, 2004, Vol. 20, No. 2, pp. 113–122.
[2]  Ting, E.C., Shih, C. and Wang, Y.K. “Fundamentals of a vector form intrinsic finite element: Part II. Plane solid element”, Journal of Mechanics, 2004, Vol. 20, No. 2, pp. 123–132
[3]  丁承先, 段元锋, 吴东岳. 向量式结构力学[M]. 北京:科学出版社,2015.
Ding Chengxian, Duan Yuanfeng, Wu Dongyue, Vector Mechanics of Structures [M]. Beijing: Science Press, 2015.
[4]  赵阳, 王震, 彭涛. 向量式有限元膜单元及其在膜结构褶皱分析中的应用[J]. 建筑结构学报,  2015(01): 127-135.
Zhao Yang, Wanc Zhen,Peng Tao. Membrane element element and its based on vector form intrinsic finite application in wrinkling analysis[J]. Journal of Building Structures, 2015(01): 127-135.
[5]  王震,赵阳,杨学林.  薄壳结构碰撞、断裂和穿透行为的向量式有限元分析[J]. 建筑结构学报, 2016, 37(06): 53-59.
Wanc Zhen, Zhao Yang,Yang Xuelin. Collision-ontact,crack-fracture and penetration behavior analysis of thin-shell structures based on vector form intrinsic finite element[J]. Journal of Building Structures, 2016, 37(06): 53-59.
[6]  段元锋, 何科, 丁承先等. 基于向量式本质有限元(VFIFE)的斜拉桥地震倒塌全过程模拟[Z]. 哈尔滨:  2012.
Duan Yuanfeng,He  Ke,Ting,et.al. Entire-process Simulation of Earthquake-induced Collapse of Cable-stayed Bridges by Vector Form Intrinsic Finite Element (VFIFE) Method[Z].  Harbin:2012.
[7]  谭晓晶, 吴斌. 外环位移控制与内环力控制拟动力试验方法[J]. 振动与冲击, 2012, 34(14): 16-21.
Tan Xiaojing, Wu Bin. Pseudo-dynamic testing with control technique combining displacement  outer loop and force inner loop[J]. Journal of vibration and shock, 2012,34(14): 16-21.
[8]  谭晓晶, 王贞, 吴斌等. 基于位移正反馈的力与位移切换控制加载方法[J]. 振动与冲击,2015,34(24):71-81.
Tan Xiaojing,Wang Zhen,Wu Bing etal. Switching control method between force control mode and displacement control mode based on positive displacement feedback[J]. Journal of vibration and shock, 2015,34(24):71-81.
[9]  俞锋, 罗尧志. 索杆结构索滑移行为分析行为的有限质点法[J]. 工程力学,2015,32(6): 109-116.
Yu Feng,Luo Yaozhi. The finite particle method for analyzing cable sliding in cable-strut structures[J]. Engineering Mechanics,  2015, 32(6): 109-116.
[10]  王震, 赵阳, 杨学林. 平面薄膜结构屈曲行为的向量式有限元分析[J]. 浙江大学学报(工学  版), 2015, 49(6): 1116-1122.
Wang Zhen, Zhao Yang, Yang Xuelin. Analysis of buckling behavior of planar membrane structures based on vector form intrinsic finite element [J]. Journal of Zhejiang University (Engineering Science), 2015, 49(6):1116-1122.
[11]  Slaats P M A, Jongh J d, Sauren A A H J. Model reduction tools for nonlinear structural dynamics [J]. Computers and Structures, 1995, 54(6): 1155-1171.
[12]  Larissa Driemeier, Sergio P. Baroncini Proenc, Mareilio Alves. A contribution to the    Numerical nonlinear analysis of three-dimensional truss systems considering large strains, damage and Plasticity[J]. Communications in Nonlinear Science and Numerical Simulation, 2005,10:515-535.
[13] 喻莹,罗尧志.基于有限质点法的结构屈曲行为分析[J].工程力学, 2009, 26(10):23-29.
Yu Ying,Luo Yaozhi. Buckling analysis of structures by the finite particle method[J]. Engineering Mechanics, 2009, 26(10): 23-29.
PDF(1396 KB)

Accesses

Citation

Detail

Sections
Recommended

/