[1] Chopra A K. Dynamics of Structures. Theory and Applications to[J]. Earthquake Engineering, 2017.
[2] Dokainish M, Subbaraj K. A survey of direct time-integration methods in computational structural dynamics—I. Explicit methods[J]. Computers & Structures, 1989, 32(6): 1371-1386.
[3] Newmark N M. A method of computation for structural dynamics[J]. Journal of the engineering mechanics division, 1959, 85(3): 67-94.
[4] 张继锋, 邓子辰, 张凯.结构动力方程求解的改进精细Runge-Kutta方法[J]. 应用数学和力学, 2015, 36(04): 378-385.( Zhang Ji-feng, Deng Zi-chen,Zhang Kai, An Improved Precise Runge-Kutta Method for Structural Dynamic Equations[J].Applied Mathematics and Mechanics,2015, 36(04): 378-385.(in chinese))
[5] 张晓志, 程岩, 谢礼立. 结构动力反应分析的三阶显式方法[J]. 地震工程与工程振动, 2002, (03): 1-8.( Zhang Xiao-zhi,Cheng Yan,Xie Li -li,A new explicit solution of dynamic response analysis[J].Earthquake Engineering And Engineering Vibration,2002,(03):1-8. (in chinese))
[6] 陈学良, 金星, 陶夏新. 求解加速度反应的显式积分格式研究[J]. 地震工程与工程振动, 2006, (05): 60-67.(Chen Xue liang, Jin Xing, Tao Xiaxin,Study on explicit in tegration formula for dynam ic acceleration response[J]Earthquake Engineering And Engineering Vibration,2006,(05):60-67. (in chinese))
[7] 杨超, 肖守讷, 鲁连涛. 基于双步长的显式积分算法[J]. 振动与冲击, 2015, 34(01): 29-32+38.( YANG Chao,XIAO Shou-ne,LU Lian-tao Explicit integration algorithm based on double time steps[J] Journal of Vibration and Shock, 2015, 34(01): 29-32+38(in chinese))
[8] Wilson E L. A computer program for the dynamic stress analysis of underground structures[R]. California Univ Berkeley Structural Engineering Lab, 1968.
[9] Hilber H M, Hughes T J, Taylor R L. Improved numerical dissipation for time integration algorithms in structural dynamics[J]. Earthquake Engineering & Structural Dynamics, 1977, 5(3): 283-292.
[10] Chung J, Hulbert G. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method[J]. Journal of applied mechanics, 1993, 60(2): 371-375.
[11] Dahlquist G G. A special stability problem for linear multistep methods[J]. BIT Numerical Mathematics, 1963, 3(1): 27-43.
[12] Chang S-Y. Explicit pseudodynamic algorithm with unconditional stability[J]. Journal of Engineering Mechanics, 2002, 128(9): 935-947.
[13] Chang S-Y. Enhanced, unconditionally stable, explicit pseudodynamic algorithm[J]. Journal of Engineering Mechanics, 2007, 133(5): 541-554.
[14] Chang S Y. An explicit method with improved stability property[J]. International Journal for Numerical Methods in Engineering, 2009, 77(8): 1100-1120.
[15] Chen C, Ricles J M. Development of Direct Integration Algorithms for Structural Dynamics Using Discrete Control Theory[J]. Journal of Engineering Mechanics, 2008, 134(8): 676-683.
[16] Kolay C, Ricles J M. Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(9): 1361-1380.
[17] 杜晓琼, 杨迪雄, 赵永亮. 一种无条件稳定的结构动力学显式算法[J]. 力学学报, 2015, 47(02): 310-319.(Du Xiaoqiong,Yang Dixiong,Zhao Yongliang.An Unconditionally Stable Explicit Algorithm For Structural Dynamics[J].Chinese Journal of Theoretical and Applied Mechanics,2015, 47(02): 310-319.(in chinese))
[18] Gui Y, Wang J-T, Jin F, et al. Development of a family of explicit algorithms for structural dynamics with unconditional stability[J]. Nonlinear Dynamics, 2014, 77(4): 1157-1170.
[19] 桂耀.一族双显式算法及其在实时耦联动力试验中的应用[D].清华大学, 2014.( Gui Yao.A Family of Dual Explicit Algorithms with Application in Real-Time Dynamic Hybrid Testing[D].Tsinghua university,2014(in chinese))
[20] Hughes T J. The finite element method: linear static and dynamic finite element analysis[M]. Courier Corporation, 2012.
[21] 张雄, 王天舒.计算动力学[M]. 清华大学出版社, 2007. (Zhang Xiong, Wang Tianshu. Computational Dynamics. Beijing: Tsinghua University Press, 2007 (in Chinese))
[22] Rezaiee-Pajand M, Hashemian M. Time Integration Method Based on Discrete Transfer Function[M]. 2015: 1550009.
[23] 刘春生, 吴庆宪. 现代控制工程基础[M]. 科学出版社, 2011. (Liu Chunsheng, Wu Qingxian. Fundamentals of Modern Control Engineering. Beijing: Science Press, 2011 (in Chinese))
[24] Ogata K. Discrete-time control systems[M]. 2. Prentice Hall Englewood Cliffs, NJ, 1995.
[25] Chang S-Y. Explicit pseudodynamic algorithm with improved stability properties[J]. Journal of engineering mechanics, 2009, 136(5): 599-612.