Design and analysis of sub-optimal control strategy for heavy vehicle active suspension

LI Jinhui1,2, ZHANG Keke2, XU Liyou1

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (13) : 141-147.

PDF(1434 KB)
PDF(1434 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (13) : 141-147.

Design and analysis of sub-optimal control strategy for heavy vehicle active suspension

  • LI Jinhui1,2, ZHANG Keke2, XU Liyou1
Author information +
History +

Abstract

In order to design a more reasonable sub-optimal control strategy of vehicle active suspension and study effects of different sub-optimal control strategies on heavy vehicle driving performance, a 4-DOF vehicle-pavement system dynamic model was established. A sub-optimal controller of vehicle active suspension was designed, and its performance indicators were weighted with the improved fuzzy hierarchy analysis method. Taking the linear weighted sum of vehicle body mass centroid acceleration and road damage coefficient as the index, different sub-optimal control strategies were evaluated and optimized. The driving performance differences of passive, optimal and sub-optimal control suspensions in time-frequency domain were contrastively analyzed. Results showed that influence difference of different sub-optimal control strategies on vehicle ride comfort and road friendliness is obvious; comprehensively considering the measurability of state variables and test cost, the sub-optimal control strategy to measure accelerations of vehicle body and axle and then perform an integral processing is optimal; the reasonably designed sub-optimal control suspension has the same performance as that of the optimal control one or is close to the latter, and it is superior to the passive suspension, so it has a better practicability.

Key words

vehicle active suspension / sub-optimal control / optimal control / ride comfort / road friendliness

Cite this article

Download Citations
LI Jinhui1,2, ZHANG Keke2, XU Liyou1. Design and analysis of sub-optimal control strategy for heavy vehicle active suspension[J]. Journal of Vibration and Shock, 2020, 39(13): 141-147

References

[1] 王陆峰. 基于粒子群算法的重型车辆悬架路面友好性非线性优化[J]. 振动与冲击, 201837(8)218-224.

WANG Lu-feng. Road friendliness optimization of heavy vehicle suspension based on particle swarm algorithm[J]. Journal of Vibration and Shock, 2018, 37(8): 218-224.

[2] 乐文超,时岩,彭安琪,等. 基于主动油气悬架的某重型车平顺性研究[J]. 振动与冲击,201635(24)183-188.

YUE Wen-chaoSHI YanPENG An-qiet al. Study on ride comfort of a heavy vehicle based on active hydro-pneumatic suspension[J]. Journal of Vibration and Shock, 2016, 35(24): 183-188.

[3] 杜恒,魏建华. 基于遗传算法的连通式油气悬架平顺性与道路友好性参数优化[J]. 振动与冲击,201130(8)133-138.

DU Heng, WEI Jian-hua. Parameters optimization of interconnected hydro-pneumatic suspension for road comfort and road-friendliness based on genetic algorithmJ. Journal of Vibration and Shock201130( 8) : 133-138.

[4] Them A. The design of LQG controller for active suspension based on analytic hierarchy process[J]. Mathematical Problems in Engineering, 2010, 242-256.

[5] 冯志鹏,张益群,冯志鸿. 主动悬架系统随机次优控制[J]. 昆明理工大学学报(自然科学版)200126(1)80-83.

FENG Zhi-peng, ZHANG Yi-qun, FENG Zhi-hong. Random sub-optimal control of active suspension[J]. Journal of Kunming University of Science and Technology, 2001, 26(1)80-83.

[6] 张玉春,王良曦,丛华. 汽车主动悬挂系统的次优控制及仿真[J]. 系统仿真学报,200315(8)1095-1097.

ZHANG Yu-Chun, WANG Liang-xi, CONG Hua. Sub-optimal control and simulation on automabile active suspension systems[J], Journal of System Simulation, 2003, 15(8):1095-1097.

[7] 董小闵,余淼,廖昌荣,等. 汽车磁流变半主动悬架频域加权次优控制研究[J]. 系统仿真学报,200618(11)3183-3186.

DONG Xiao-min, YU Miao, LIAO Chang-rong, et al. Research on frequency-shaping sub-optimal control for semi-active suspension[J], Journal of System Simulation, 200618(11)3183-3186.

[8] 李金辉,乐升彬,徐春旺. 基于次优控制的汽车主动悬架道路友好性研究[J]. 交通信息与安全,201331(4)5-9.

LI Jin-hui, LE Sheng-bin, XU Chun-wang. Road-friendliness of vehicle active suspension based on sub-optimal control[J]. Traffic information and safety201331(4) : 5-9.

[9] 李金辉,何杰,李旭宏. 基于轴距预瞄的重型汽车主动悬架道路友好性研究[J]. 公路交通科技,201330(11)152-158.

LI Jin-hui, HE Jie, LI Xu-hong. Road-friendliness analysis of heavy-duty vehicle active suspension based on wheelbase preview control[J]. Journal of Highway and Transportation Research and Development, 2013, 30 (11): 152-158.

[10] 顾仲权,马扣根,陈卫东. 振动主动控制[M]. 北京:国防工业出版社,1997.

GU Zhong-quan, MA Kou-gen, CHEN Wei-dong. Vibration active control[M]. Beijing: National Defense Industry Press, 1997.

[11] 罗鑫源,杨世文. 基于AHP的车辆主动悬架LQG控制器设计[J]. 振动与冲击,201332(2)102-106.

LUO Xin-yuan, YANG Shi-wen. Design of a LQG controller for a vehicle active suspension system based on AHP[J]. Journal of Vibration and Shock, 2013, 32(2):102-106.

[12] 陈士安,邱峰,何仁,等. 一种确定车辆悬架LQG控制加权系数的方法[J]. 振动与冲击,200827(2)65-68.

CHEN Shi-an, QIU Feng, HE Ren, et al. A method for choosing weighs in a suspension LQG control[J]. Journal of Vibration and Shock, 2008, 27(2):65-68.

[13] 李永,胡向红,乔箭. 改进的模糊层次分析法[J]. 西北大学学报(自然科学版),200535(1)11-12.

LI Yong, HU Xiang-hong, QIAO Jian. An improved fuzzy AHP method[J]. Journal of Northwest University (Natural Science Edition), 2005, 35(1): 11-12.

[14] 赵又群,刘英杰. 基于改进模糊层次分析法的汽车操纵稳定性主观综合评价[J]. 中国机械工程,201324 (18)2519-2523.

ZHAO You-qun, LIU Ying-jie. Research on subjective evaluation indexes for vehicle handling stability based on improved analytic hierarchy process and fuzzy comprehensive evaluation[J]. China Mechanical Engineer, 2013, 24(18): 2519-2523.

[15] 张立军何辉. 车辆行驶动力学理论及应用[M]. 北京国防工业出版社2011.

ZHANG Li-jun, HE Hui. Vehicle running dynamics and application[M]. Beijing: National Defense Industry Press, 2011.

[16] 飞思科技产品研发中心. MATLAB 7辅助信号处理技术与应用[M]. 北京:电子工业出版社,2005.

Feith Research and Development Center for Science and Technology Products. MATLAB 7 auxiliary signal processing technology and applications[M]. Beijing: Electronic Industry Press, 2005.

PDF(1434 KB)

Accesses

Citation

Detail

Sections
Recommended

/