Anti-collapse capacity analysis for a steel frame composite beam-column substructure with asymmetric span

ZHONG Weihui1,2, TAN Zheng1, SONG Xiaoyan1, MENG Bao1

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (13) : 260-266.

PDF(1359 KB)
PDF(1359 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (13) : 260-266.

Anti-collapse capacity analysis for a steel frame composite beam-column substructure with asymmetric span

  • ZHONG Weihui1,2, TAN Zheng1, SONG Xiaoyan1, MENG Bao1
Author information +
History +

Abstract

Based on the alternate load path method and fully considering composite effect of floor slab, a composite beam-column substructure with unequal span was taken as the study object to propose an explicit simplified model of a double-span composite beam under concentrated load. The formulas for the substructure’s load-displacement calculation in five different stages including elastic stage, elastic-plastic one, plastic one, transition one and catenary one during its continuous collapse were derived in detail. The anti-collapse mechanism of the composite beam-column substructure was emphatically analyzed. Its numerical analysis model was established using the finite element software ABAQUS, the calculation results using the theoretical formulas were compared with those using numerical simulation analysis under different span ratios. Results showed that the theoretical formulas derived here have a good generality and a higher calculation accuracy for continuous collapse analysis of composite beam-column substructure with asymmetric span.

Key words

composite beam-column substructure / continuous collapse / asymmetric span; anti-collapse mechanism; theoretical formula

Cite this article

Download Citations
ZHONG Weihui1,2, TAN Zheng1, SONG Xiaoyan1, MENG Bao1. Anti-collapse capacity analysis for a steel frame composite beam-column substructure with asymmetric span[J]. Journal of Vibration and Shock, 2020, 39(13): 260-266

References

[1]      Demonceau J.F., Jaspart J.P. Experimental and analytical  investigations on the response of structural building framesfurther to a column loss[C]. Proceedings of the 2009 Structures Congress, 2009: 1801-1810.

[2]      Izzuddin B.A., Vlassis A.G., Nethercot D.A., Progressive  collapse of multi-storey buildings due to sudden column  loss-part I:simplified assessment pramework[J]. Engineering  Structures, 2008, 30(5): 1308-1318.

[3]      Vlassis A.G.., Izzuddin B.A., Nethercot D.A., progressive  collapse of multi-storey buildings due to sudden column  loss-Part II: application[J]. Engineering Structures, 2008, 30(5): 1424-1438.

[4]      李国强,王开强,杨涛春. 考虑悬链线效应的约束钢梁在分布荷载作用下的性(I)——理论模型[J]. 土木工程学报, 2010, 43(1): 1-7.

Wang Kaiqiang,Li Guoqiang,Yang Taochun. A study of restrained steel beams with catenary action under distributed load-Part I:theoretical model[J].China Civil Engineering Journal.2010, 43(1): 1-7.

[5]      李国强,王开强,杨涛春. 考虑悬链线效应的约束钢梁在分布荷载作用下的性(II)——数值算例验证[J]. 土木工程学报, 2010, 43(1): 8-12.

Li Guoqiang,Wang Kaiqiang,Yang Taochun. A study of restrained steel beams with catenary action under distributed load-Part II:numerical verification[J].China Civil Engineering Journal.2010, 43(1): 8-12.

[6]      钟炜辉,孟宝,郝际平. 不对称跨度下钢框架梁柱子结构抗倒塌性能分析[J]. 工程力学, 2017, 34(5): 125-131.

Zhong Weihui,Meng Bao,Hao Jiping. Analysis of anti-collapse of steel frame beam-column substructure with asymmetric spans[J].Engineering mechanics,2017, 34(5): 125-131.in Chinese

[7]      乔惠云, 杨应华, 钟炜辉. 中柱失效下多层框架的连续性倒塌分析与机理研究[J]. 振动与冲击, 2018, 37(22):136-143.

Qiao Huiyun;Yang Yinghua;Zhong Weihui. Progressive collapse analysis and mechanism study for multi-story frame

structures with middle-column demolition[J].Journal of Vibration and Shock.2018, 37(22): 136-143.

[8]      Yang B., Tan K.H., Xiong G., et al. Experimental study about composite frames under an internal column-removal scenario[J]. Journal of Constructional Steel Research, 2016, 121: 341-351.

[9]      Li L, Wang W, Chen Y, et al. Effect of Beam Web Bolt Arrangement on Catenary Behaviour of Moment Connections[J]. Steel Construction, 2015, 104(104):22-36.

[10]   S. Gao,L.H. Guo.Capacity of semi-rigid composite joints in accommodating column loss[J]. Journal of Constructional Steel Research, 2017, 139(139): 288-301.

[11]   Yin Y Z.Wang Y C. Analysis of catenary action in steel beams using a simplified hand calculation method, Part 1: theory and validation for uniform temperature distribution[J]. Journal of Constructional Steel Research, 2005, 61(2): 183-211.

[12]   赵鸿铁,张素梅. 组合结构设计原理[M]. 教育出版社, 2005.

Zhao Hongtie,Zhang Sumei.Composite structure design principle[M].Higher Education Press,2005.in Chinese

[13]   Haluk Sucuoglu Ç E., Altin S., Resistance mechanisms in RC building frame subject to column failure[J]. Journal of Structural Engineering, 1994, 120(3): 765-782.

[14]   苑学众,孙雅珍. 计算简支梁最大挠度的简单方法[J]. 力学与实践, 2013, 35(4): 63-64.

Wang Xuezhong,Sun Yazhen.A simple method for calculating    the maximum deflection of simply-supported beams[J].Mechanics in  Engineering , 2013, 35(4): 63-64.

[15]   王英,顾祥林,林峰. 考虑压拱效应的钢筋混凝土双跨梁竖向承载力分析[J]. 建筑结构学报, 2013, 34(4): 32-42.

Wang ying,Gu xianglin,Lin Feng.Vertical bearing capacity of RC two-bay beams considering compressive arch action[J].Journal of Building Structures[11]2013, 34(4): 32-42.

[16]   DoD2010. Design of structures to resist progressive collapse[S]. Washington DC: Department of Defense, 2010.

[17]   GB50010-2010. 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

GB50010-2010.Code for design of concrete structures[S]. Beijing:China Architecture&Building Press,2010.in Chinese

PDF(1359 KB)

Accesses

Citation

Detail

Sections
Recommended

/