Influences of in-situ stress on blast-induced rock fracture and seismic waves

YANG Jianhua, WU Zenan, YAO Chi, JIANG Shuihua, JIANG Qinghui

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (13) : 64-70.

PDF(1368 KB)
PDF(1368 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (13) : 64-70.

Influences of in-situ stress on blast-induced rock fracture and seismic waves

  • YANG Jianhua, WU Zenan, YAO Chi, JIANG Shuihua, JIANG Qinghui
Author information +
History +

Abstract

Deep rock mass blasting excavation is due to combined effects of high in-situ stress and dynamic stress generated by explosion. Here, effects of in-situ stress field on blast-induced rock fracture and seismic wave energy outside cracked zone were investigated by using a coupled numerical simulation method called SPH-FEM. The results showed that with increase in in-situ stress level, cracked zone range narrows and crack propagation velocity drops; in a non-hydrostatic in-situ stress field, rock cracks in cracked zone mainly spread along the maximum principal stress direction, but in-situ stress almost does not affect formation of blast crushed zone; form change of blast cracked zone under in-situ stress affects energy and propagation characteristics of blast seismic waves; with increase in in-situ stress level, more explosion energy of explosives is converted into seismic wave energy, generated blast seismic waves with high frequencies decay faster with increase in distance,  and blast seismic wave energy in smaller principal stress direction  is larger;  the study results can provide a theoretical reference for optimal design of deep rock mass blasting excavation.

Key words

blast / in-situ stress / crack / vibration / seismic wave / SPH-FEM

Cite this article

Download Citations
YANG Jianhua, WU Zenan, YAO Chi, JIANG Shuihua, JIANG Qinghui. Influences of in-situ stress on blast-induced rock fracture and seismic waves[J]. Journal of Vibration and Shock, 2020, 39(13): 64-70

References

[1]         张春生,周垂一,刘宁. 锦屏二级水电站深埋特大引水隧洞关键技术[J]. 隧道建设(中英文)201737(11)1492-1501.

ZHANG Chunsheng, ZHOU Chuiyi, LIU Ning. Key technologies for extremely-large deep-buried headrace tunnel: a case study of Jinping II hydropower station[J]. Tunnel Construction, 2017, 37(11): 1492-1501.

[2]         樊启祥,王义锋,裴建良,等. 大型水电工程建设岩石力学工程实践[J]. 人民长江,201849(16)76-86.

FAN Qixiang, WANG Yifeng, PEI Jianliang, et al. Engineering practice of rock mechanics in large-scale hydropower projects[J]. Yangtze River, 2018, 49(16): 76-86.

[3]         Donze F V, Bouchez J, Magnier S A. Modeling fractures in rock blasting[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1153-1163.

[4]         肖思友,姜元俊,刘志祥,等. 高地应力下硬岩爆破破岩特性及能量分布研究[J]. 振动与冲击,2018, 37(15): 143-149.

XIAO Siyou, JIANG Yuanjun, LIU Zhixiang, et al., Hard rock blasting energy distribution and fragmentation characteristics under high earth stress [J]. Journal of vibration and shock, 2018, 37(15): 143-149.

[5]         唐红梅, 周云涛, 廖云平. 地下工程施工爆破围岩损伤分区研究[J]. 振动与冲击, 2015, 34(23): 202-206.

TANG Hong-mei, ZHOU Yun-tao, LIAO Yun-ping. Damage zone of surrounding rock of underground engineering under construction blasting[J]. Journal of Vibration and Shock, 2015, 34(23): 202-206.

[6]         李启月,黄武林,吴正宇,等. 不同地应力条件下直眼掏槽破岩的理论研究与数值模拟[J]. 中国安全生产科学技术,2016, 12(11): 57-62.

LI Qiyue, HUANG Wulin, WU Zhengyu, et al. Theoretical study and numerical simulation on rock failure process in cutting by parallel hole under different ground stress conditions[J]. Journal of Safety Science and Technology, 2016, 12(11): 57-62.

[7]         刘艳,许金余. 地应力场下岩体爆体的数值模拟[J]. 岩土力学,2007, 28(11): 2485-2488.

LIU Yan, XU Jin-yu. Numerical simulation of explosion in rock mass under ground stress field[J]. Rock and Soil Mechanics, 2007, 28( 11): 2485-2488.

[8]         戴俊,钱七虎. 高地应力条件下的巷道崩落爆破参数[J]. 爆炸与冲击,2007, 27(3): 272-277.

DAI Jun, QIAN Qi-hu. Break blasting parameters for driving a roadway in rock with high residual stress[J]. Explosion and Shock Waves, 2007, 27(3): 272-277.

[9]         赵宝友,王海东. 深孔爆破技术在高地应力低透气性高瓦斯煤层增透防突中的适用性[J]. 爆炸与冲击,2014, 34(2): 145-152.

Zhao Bao-you, Wang Hai-dong. Feasibility of deep-hole blasting technology for outburst prevention and permeability enhancement in high-gas-content coal seams with low-permeability subjected to high geo-stresses[J]. Explosion and Shock Waves, 2014, 34(2): 145-152.

[10]      蔡峰,刘泽功. 岩石爆破损伤SPH-FEM耦合法数值模拟分析[J]. 采矿与安全工程学报, 2015, 32(5): 840-845.

CAI Feng, LIU Zegong. Numerical simulation and analysis of blasting process in rock using SPH-FEM coupling algorithm[J]. Journal of Mining & Safety Engineering, 2015, 32(5): 840-845.

[11]      Johnson G R, Holmquist T J. An improved computational constitutive model for brittle materials[C]. Aip Conference. American Institute of Physics, 1994: 981-984.

[12]      Ma G W, An X M. Numerical simulation of blasting-induced rock fractures[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(6): 966-975.

[13]      Lee EL, Horing HC, Kury JW. Adiabatic expansion of high explosive detonation product. Report NO. UCRL50422. California Univ[M]. United States: Lawrence Radiation Lab; 1968.

[14]      Lu W, Leng Z, Hu H, et al. Experimental and numerical investigation of the effect of blast-generated free surfaces on blasting vibration[J]. European Journal of Environmental & Civil Engineering, 2016: 1-25.

[15]      Esen S, Onederra I, Bilgin H A. Modelling the size of the crushed zone around a blasthole[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(4): 485-495

Sanchidrián J A, Segarra P, López L M. Energy components in rock blasting[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1): 130-147.
PDF(1368 KB)

Accesses

Citation

Detail

Sections
Recommended

/