Method for identifying the nonlinearity of a helicopter tail drive shaft system based on frequency response functions

SHAN Weidong1,ZANG Chaoping1,ZHANG Genbei1,WANG Ping2,ZOU Yachen2,NI De2

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (14) : 102-108.

PDF(1695 KB)
PDF(1695 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (14) : 102-108.

Method for identifying the nonlinearity of a helicopter tail drive shaft system based on frequency response functions

  • SHAN Weidong1,ZANG Chaoping1,ZHANG Genbei1,WANG Ping2,ZOU Yachen2,NI De2
Author information +
History +

Abstract

A method for identifying nonlinear modal parameters of the tail drive shaft system of a helicopter based on the tested frequency response functions was proposed.Using the linear modal analysis and in accordance with the response amplitude linearization theory, the nonlinear modal parameters of the tail drive shaft system were identified by the stepped sine sweep test in order to obtain the frequency response functions at different excitation levels.The results show that the first-order natural frequency of the tail drive shaft system decreases by about 2%, while the damping ratio increases by about 1.5 times, as the amplitude of the excitation force increases.Multiple sets of test analyses were performed under the same state and the results are consistent.The approach for identifying the modal parameters of the nonlinearity of the tail drive shaft system lays a foundation for further research on the dynamic characteristics of the helicopter tail drive shaft system.

Key words

helicopter tail drive shaft system / frequency response function / nonlinear modal / modal test

Cite this article

Download Citations
SHAN Weidong1,ZANG Chaoping1,ZHANG Genbei1,WANG Ping2,ZOU Yachen2,NI De2. Method for identifying the nonlinearity of a helicopter tail drive shaft system based on frequency response functions[J]. Journal of Vibration and Shock, 2020, 39(14): 102-108

References

[1]  聂峻峰. 直升机传动轴系结构及动力学特性研究[D]. 哈尔滨理工大学,2016.
NIE Jun-feng. Research on structure and dynamic characteristics of helicopter transmission shafting [D]. Harbin University of Science and Technology, 2016.
[2]  朱自冰. 直升机尾传动系统动力学关键问题研究[D]. 南京航空航天大学,2012.
ZHU Zi-bing. Research on Key Issues in Dynamics of Helicopter Tail Drive System[D]. Nanjing University of Aeronautics and Astronautics, 2012.
[3]  许兆棠, 朱如鹏. 直升机尾传动系扭转振动的分析[J]. 航空学报, 2007, 28(2):425-431.
XU Zhao-tang, ZHU Ru-peng. Analysis of torsional vibration of helicopter tail train[J]. Acta Aeronautica Sinica, 2007, 28(2): 425-431.
[4]  许兆棠, 朱如鹏. 直升机弹性多支点传动轴的主共振分岔分析[J]. 航空动力学报, 2006, 21(2):342-348.
Xu Zhao-tang, Zhu Ru-peng. A principal resonance bifurcation analysis of a helicopter multi-support point transmission shaft[J]. Journal of Aerospace Power, 2006, 21(2):342-348.
[5]  倪德, 朱如鹏, 靳广虎, 等. 机动飞行时直升机尾传动轴的横向振动建模与特性[J]. 振动与冲击,2014,33(7):215-220.
NI De, ZHU Ru-peng, JIN Guang-hu, et al. Modeling and Characteristics of Lateral Vibration of Helicopter Tail Drive Shaft in Maneuvering Flight[J]. Journal of Vibration and Shock, 2014, 33(7): 215-220.
[6]  倪德, 朱如鹏, 陆凤霞, 等. 考虑空间机动飞行的直升机尾传动轴建模与临界转速分析[J]. 航空动力学报. 2015, 30(6): 1520-1528.
Ni De, ZHU Ru-peng, Lu Feng-xia, et al. Modeling and Critical Speed Analysis of Helicopter Tail Drive Shaft Considering Space Maneuvering Flight[J]. Journal of Aerospace Power, 2015, 30(6): 1520-1528.
[7]  朱自冰, 朱如鹏, 鲍和云. 直升机尾传动轴系统扭转振动建模与特性[J]. 航空动力学报. 2013, 28(2): 432-438.
ZHU Zi-bing, ZHU Ru-peng, BAO He-yun. Modeling and characteristics of torsional vibration of helicopter tail drive system[J]. Journal of Aerospace Power, 2013, 28(2): 432-438.
[8]  Bayón A, Gascón F, Medina R, et al. On the flexural vibration of cylinders under axial loads: Numerical and experimental study[J]. Journal of Sound & Vibration, 2012, 331(10):2315-2333.
[9]  M.D. Al-Ansary. Flexural vibrations of rotating beams considering rotary inertia[J]. Computers & Structures, 1998, 69(3):321-328.
[10]  Tan C A, Kuang W. Vibration of a rotating discontinuous shaft by the distributed transfer function method[J]. Journal of Sound & Vibration, 1995, 183(3):451-474.
[11]  Arslan, M. Aykan and H. N Ozguven, Modal identification of non-linear structures and the use of modal model in structural dynamic analysis, in: 26th International Modal Analysis Conference IMAC, Orlando, USA, 2008, Paper no.95.
[12]  G. Kerschen et al., Past, present and future of nonlinear system identification in structural dynamics, Mechanical Systems and Signal Processing, Vol.20 No.3 (2006), pp. 505-592.
[13]  S.F. Masri, T.K. Caughey, Nonparametric identification technique for non-linear dynamic problems, Journal of Applied Mechanics—Transactions of the ASME 46 (2) (1979) 433–447.
[14]  J. He, D.J. Ewins, A simple method of interpretation for the modal analysis of nonlinear structures, in: Proceedings of the IMAC V, London, 1987.
[15]  D. Goge, et al., Detection and description of non-linear phenomena in experimental modal analysis via linearity plots, International Journal of Non-linear Mechanics 40 (1) (2005) 27–48.
[16]  C. Zang, C.W. Schwingshackl and D.J. Ewins. The influence of nonlinearity on uncertainty and variability for dynamic models[C]. Proceedings of the 1st International Conference on Uncertainty in Structural Dynamics. Sheffield, UK, May 2007:311-319.
[17]  张根辈, 臧朝平.基于振动测试的非线性参数识别方法[J].振动与冲击, 2013, 32(1):83-88.
ZHANG Gen-bei, ZANG Chao-ping. Nonlinear parameter identification method based on vibration test[J]. Journal of Vibration and Shock, 2013, 32(1).
[18]  G.B.Zhang, C. Zang. Identification and verification of structural nonlinearities based on vibration tests[C]// Isma. 2012.
[19]  Carrella A, Ewins D J . Identifying and quantifying structural nonlinearities in engineering applications from measured frequency response functions[J]. Mechanical Systems & Signal Processing, 2011, 25(3):1011-1027
 
PDF(1695 KB)

690

Accesses

0

Citation

Detail

Sections
Recommended

/