Flow-induced noise of a high pressure drop control valve

LI Shuxun1,2,KANG Yunxing1,2,MENG Lingqi1,2,PAN Weiliang1,2,ZHANG Wannian1,2,LIU Taiyu1,2

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (14) : 116-121.

PDF(1298 KB)
PDF(1298 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (14) : 116-121.

Flow-induced noise of a high pressure drop control valve

  • LI Shuxun1,2,KANG Yunxing1,2,MENG Lingqi1,2,PAN Weiliang1,2,ZHANG Wannian1,2,LIU Taiyu1,2
Author information +
History +

Abstract

The high noise that occurs during the operation process of high-parameter control valves in special working conditions is one of the important issues that must be considered in the valve’s parametric design and optimization design.Based on the flow-induced theory, the RNG k-ε  method and BEM were jointly used to simulate and study the influences of elements parameters of a multi-stage steam trap on the sound pressure, distribution and spectrum characteristics of flow induced noises.The results show that the throttling zones, where the pressure pulsation is the strongest, are the main sound source of flow-induced noise; the flow induced noises in the control valves with different sleeve structure parameters; are all of distinct broad spcetrum characteristics; the sound pressure level (SPL) of the noise rises as the sleeve diameter increases, which means that the sleeve with smaller diameter could curb the flow-induced noise better; the SPL decreases first and then  increase as the sleeve clearance increases, when the sleeve clearance is 8 mm, the SPL reaches its minimum 51.02 dB(A).

Key words

high pressure-drop / multi-level sleeve / control valve / elements parameter / flow-induced noise / spectrum characteristic

Cite this article

Download Citations
LI Shuxun1,2,KANG Yunxing1,2,MENG Lingqi1,2,PAN Weiliang1,2,ZHANG Wannian1,2,LIU Taiyu1,2. Flow-induced noise of a high pressure drop control valve[J]. Journal of Vibration and Shock, 2020, 39(14): 116-121

References

[1] 姜根山, 许伟龙, 孔倩, et al. 强声波在电站锅炉中传播特性的研究[J]. 动力工程学报, 2016, (09): 683-689.
Jiang G, Weilong X U, Qian K, et al. Propagation Characteristics of High-intensity Sound in Power Plant Boilers[J]. Journal of Chinese Society of Power Engineering, 2016,(09): 683-689.
[2] Lighthill M J. On Sound Generated Aerodynamically. I. General Theory[J]. Proceedings of the Royal Society of London, 1952, 211(1107): 564-587.
[3] Lighthill M J. On Sound Generated Aerodynamically. II. Turbulence as a Source of Sound[J]. Proceedings of the Royal Society of London, 1954, 222(1148): 1-32.
[4] Curle N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society of London, 1955, 231(1187): 505-514.
[5] Williams J E F, Hawkings D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society, 1969, 264(1151): 321-342.
 [6] 卢云涛, 张怀新, 潘徐杰. 全附体潜艇的流场和流噪声的数值模拟[J]. 振动与冲击, 2008, 27(9): 142-146.
Lu Y T, Zhang H X, Pan X J. Numerical simulation of flow-field and flow-noise of a fully appendage submarine [J]. Journal of Vibration & Shock, 2008, 27(9).
[7] Velarde-Suárez S, Ballesteros-Tajadura R, Hurtado-Cruz J P, et al. Experimental determination of the tonal noise sources in a centrifugal fan[J]. Journal of Sound & Vibration, 2006, 295(3): 781-796.
[8] 刘厚林, 丁剑, 王勇, et al. 基于大涡模拟的离心泵水动力噪声数值模拟[J]. 机械工程学报, 2013, 49(18): 177-183.
Liu H, Ding J, Wang Y, et al. Numerical Simulation of Hydrodynamic Noise in Centrifugal Pump Based on LES[J]. Journal of Mechanical Engineering, 2013, 49(18):177.
[9] 苏华山, 杨国来, 张立强, et al. 加油机溢流阀流体振动噪声分析与优化[J]. 振动与冲击, 2013, 32(23): 130-134.
Su H S, Yang G L, Zhang L Q, et al. Analysis and improvement for noise and vibration of a relief valve in a gasoline pump system[J]. Journal of Vibration & Shock, 2013,32(23): 130-134.
[10] 徐峥, 王德忠, 张继革, et al. 主蒸汽隔离阀管系振动与噪声分析[J]. 上海交通大学学报, 2010, 44(1): 95-100.
XU Zheng, WANG De-zhong, ZHANG Ji-ge, et al. Analysis for vibration and noise problem of main steam isolation valve with pipelines[J]. Journal of Shanghai Jiaotong University, 2010, 44(1): 95-100.
 [11] Changjun L , Shikui Y , Dandan W , et al. CFD Analysis of Flow Noise at Tees at Natural Gas Station[J]. Noise Control Engineering Journal, 2018, 66(1):1-10.
[12] 孙权. 水下航行体流致噪声的数值研究[D].  武汉理工大学, 2014.
Sun Quan. Numerical Simulation of Flow-induced Noise With Underwater Vehicle[D] .  Wuhan University of Technology,2014.
[13] 杨定国. 基于CFD/CAA的直筒笼式阀流动及噪声特性研究[D].  杭州电子科技大学, 2014.
Yang Ding-guo. CFD/CAA Based Study of Cage Valve
Flow and Noise Characteristics[D].  Hangzhou Dianzi University, 2014.
[14] Langthjem M A , Olhoff N . A numerical study of flow-induced noise in a two-dimensional centrifugal pump. Part I. Hydrodynamics[J]. Journal of Fluids & Structures, 2004, 19(3):349-368.
[15] 朱镇涛. 管道泵及其出口直管流动噪声的数值模拟研究[D].  江苏大学, 2016.
Zhu Zhen-tao. Numerical Simulation of Flow Noise for a Pipeline Pump and its Outlet Pipe[D].  Jiangsu University, 2016.
[16] 李树勋, 赵子琴, 张云龙. 高温高压过热蒸汽疏水阀消声减振研究[J]. 振动与冲击, 2011, (10): 116-121.
Li S X, Zhao Z Q, Zhang Y L. Noise elimination and vibration reduction for a superheat steam trap with high temperature and high pressure[J]. Journal of Vibration & Shock, 2011, 30(10):116-121.
[17] Zhang C, Luo Y, Liang J, et al. Flow-induced Noise Prediction for 90˚Bend Pipeby LES and FW-H Hybrid Method[J]. Scientific Research & Essays, 2014, 9(11): 483-494.
[18] 娄燕鹏. 高压降多级降压疏水阀及阀控管道振动噪声特性研究[D].  兰州理工大学, 2016.
Lou Yan-peng. Research on Noise and Vibration of Multi-stage Depressed Drain Valve and Pipeline[D].  Lanzhou University of Technology, 2016.
[19] 卢云涛, 张怀新, 潘徐杰. 四种湍流模型计算回转体流噪声的对比研究[J]. 水动力学研究与进展, 2008, 23(3): 348-355.
Yun-Tao L U, Zhang H X, Pan X J. Comparison between the simulations of flow-noise of a submarine-like body with four different turbulent models[J]. Chinese Journal of Hydrodynamics, 2008.
[20] 李树勋,王天龙,徐晓刚,孟令旗,娄燕鹏.高压降套筒式蒸汽疏水阀振动特性研究[J].振动与冲击,2018,37(04):147-152.
Shuxun L I, Wang T, Xiaogang X U, et al. A study on the vibration characteristics of high pressure drop sleeve trap[J]. Journal of Vibration & Shock, 2018,37(04):147-152.
PDF(1298 KB)

365

Accesses

0

Citation

Detail

Sections
Recommended

/