In-plane random vibration of stay cable system under Poisson white noise excitation

LIU Jingrui1, CHEN Lincong1,2, ZHAO Yaobing1

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (15) : 230-236.

PDF(1383 KB)
PDF(1383 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (15) : 230-236.

In-plane random vibration of stay cable system under Poisson white noise excitation

  • LIU Jingrui1, CHEN Lincong1,2, ZHAO Yaobing1
Author information +
History +

Abstract

The nonlinear random vibration of stay cables has been studied extensively so far, but it appeared to be limited to Gaussian white noise excited cases. However, the random disturbances in reality are non-Gaussian excitations. There will be large errors if Gaussian excitations are replaced by non-Gaussian excitations. In this paper, the stay cable system is supposed to be excited by Poisson white noise, and the in-plane random vibration of stay cable system under non-Gaussian stochastic excitation is studied. First, the stochastic differential equation of the in-plane vibration of stay cable system under Poisson white noise excitation is formulated, and the corresponding reduced generalized Fokker-Plank-Kolmogorov (FPK) equation governing the probability density function (PDF) of stationary response is established. Then, the iterative method of weighted residuals is proposed to solve the fourth-order generalized FPK equation to yield the approximate stationary PDF of system. Finally, the effects of sag ratio, damped coefficient and pulse arrival rate on the in-plane stochastic vibration of cable are examined. The results show that the asymmetric appearance of response is becoming much obvious while the sag ratio increases; the response is then suppressed obviously as the coefficient of damping increases; the response of stay cable system increases rapidly with the increase of pulse arrival rate, and is getting closer to the Gaussian white noise excited case. Besides, the feasibility of the method is compared with the Monte Carlo simulation. The results show that the analytical solutions are in good agreement with Monte Carlo simulation data.

Key words

 iterative method of weighted residuals / cable vibration / Poisson white noise / random vibration / in-plane vibration

Cite this article

Download Citations
LIU Jingrui1, CHEN Lincong1,2, ZHAO Yaobing1. In-plane random vibration of stay cable system under Poisson white noise excitation[J]. Journal of Vibration and Shock, 2020, 39(15): 230-236

References

[1] 康厚军,郭铁丁,赵跃宇等. 大跨度斜拉桥非线性振动模型与理论研究进展[J]. 力学学报,2016,48(3): 519-535
Kang H J, Guo T D, Zhao Y Y. Review on nonlinear vibration and modelling of large span cable-stayed bridge[J]. Chinese Journal of Theoretical and Applied Mechanics,2016, 48(3): 519-535
[2] 郭铁丁,康厚军. 工程索结构动力学:非线性建模与分析[J].力学与实践,2016,38(2):119-125.
Guo T D, Kang H J. Dynamic of engineering cable: nonlinear modelling and analysis[J]. Mechanics in Engineering, 2016,38(2):119-125.
[3] Virlogeux M. Cable vibrations in cable-stayed bridges. Bridge aerodynamics,1998,154(1):121-139.
[4] 汪至刚,孙炳楠. 斜拉索的参数振动[J]. 土木工程学报, 2002,35(5):28-33.
Wang Z G, Sun B N. Parametric vibration of the cable in cable-stayed bridge[J]. China Civil Engineering Journal,2002, 35(5):28-33.
[5] Georgakis C T, Taylor C A. Nonlinear dynamics of cable stays. Part 1:sinusoidal cable support excitation[J]. Journal of Sound and Vibration,2005,281(3-5):537-564.
[6] Berlioz A, Lamarque C H. A non-linear model for the dynamics of an inclined cable[J]. Journal of Sound and Vibration,2005,279(3-5):619-639.
[7] 陈水生,孙炳楠. 斜拉索受轴向激励引起的面内参数振动分析[J]. 振动工程学报, 2002,15(2):144-150.
Chen S S, Sun B N. Analysis of Stayed-Cable Vibration Caused by Axial Excitation[J]. Journal of Vibration Engineering,2002,15(2):144-150.
[8] 陈丕华,王修勇,陈政清,殷习军,孙洪鑫.斜拉索面内参数振动的理论和试验研究[J].振动与冲击,2010,29(02):50-53.
Chen P H, Wang X Y, Chen Z Q, Yin X J, Sun H X. Theoretical and experimental study on planar parametric oscillations in a stayed-cable[J]. Journal of Vibration and Shock,2010,29(02):50-53
[9] Kang H J, Zhu H P, Zhao Y Y. In-plane non-linear dynamics of the stay cables[J]. Nonlinear Dynamics,2013,73(3):1385- 1398.
[10] 汪峰,文晓旭,刘章军.斜拉桥塔-索-桥面耦合参数振动模型及响应分析[J].固体力学学报,2015,36(05):444-452.
Wang F, Wen X Y, Liu Z J. Coupled vibration model for tower-cable-deck of long-span cable-stayed bridge and its response analysis[J]. Acta Mechanica Solida Sinica,2015, 36(05):444-452.
[11] 赵珧冰,孙测世.温度变化对端部激励斜拉索共振响应影响[J].计算力学学报,2017,34(05):644-649.
Zhao Y B, Sun C S. Temperature effects on the resonance responses of stay cables under support excitation[J]. Chinese Journal of Computational Mechanics. 2017,34(05):644-649.
[12] Rega G. Nonlinear vibrations of suspended cables—Part I: Modeling and analysis[J]. Applied Mechanics Reviews,2004, 57(6):443-478.
[13] Rega G. Nonlinear vibrations of suspended cables—Part II: Deterministic phenomena[J]. Applied Mechanics Reviews, 2004,57(6):479-514.
[14] Georgakis C T, Taylor C A. Nonlinear dynamics of cable stays. Part 2: stochastic cable support excitation[J]. Journal of Sound and Vibration,2005,281(3):565-591.
[15] Fujino Y, Xia Y. Auto-Parametric Vibration of a Cable- Stayed-Beam Structure under Random Excitation [J]. Journal of Engineering Mechanics. 2006,132(3):279-286.
[16] Larsen J W, Nielsen S R K. Non-linear stochastic response of a shallow cable[J]. International Journal of Non-Linear Mechanics,2006,41(3):327-344
[17] 王波,张海龙,徐丰,郭翠翠.随机横桥向激励下斜拉索面内耦合振动特性研究[J].振动与冲击,2008,27(8):59-64.
Wang B, Zhang H L, Xu F, Guo C C. In-plane Coupled Vibration of Inclined Cables Under Random Transverse Excitation[J]. Journal of Vibration and Shock,2008,27(8): 59-64.
[18] 苏志彬,孙胜男.基于随机等价线性化法的悬浮隧道锚索随机振动研究[J].振动与冲击,2015,34(04):190-194.
Su Z B, Sun S N. Random vibration analysis of a submerged floating tunnel's tether based on stochastic equivalent linearization method[J]. Journal of Vibration and Shock,2015, 34(04):190-194.
[19] 朱海涛,王武国.基于路径积分法的悬索非线性随机振动响应分析[J].应用力学学报,2018,151(3):5-11.
Zhu H T, Wang W G. Stochastic response analysis of a nonlinear cable with path integration[J]. Chinese Journal of Applied Mechanics,2018,151(3):5-11.
[20] 李锦华,李建丰,陈水生等.具有时变功率谱的非高斯随机过程的数值模拟[J].振动与冲击,2018,36(2):204-209.
Li J H, Li J F, Chen S S. Numerical simulation of non- Gaussian stochastic process with time-varying power spectrum[J]. Journal of Vibration and Shock,2018,151(3): 5-11.
[21] Irvine H M, Caughey T K . The Linear Theory of Free Vibrations of a Suspended Cable[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1974,341(1626):299-315.
[22] 任淑琰,顾明.斜索-桥面耦合面内参数振动Ⅰ:理论模型[J].土木工程学报,2009,42(05):79-84.
Ren S Y, Gu M, Parametric vibration of inclined cable-deck system I: theoretical formulation [J]. China Civil Engineering Journal, 2009,42(05):79-84.
[23] Wu Q, Takahashi K, Okabayashi T. Response characteristics of local vibrations in stay cables on an existing cable-stayed bridge[J]. Journal of Sound and Vibration,2003,261(3): 403-420.
[24] 肖跃文,袁刚,王波. 斜拉索面内随机参数振动分析[J]. 世界桥梁, 2008(3):32-35.
Xiao Y W, Yuan G, Wang B. Analysis of In-Plane Stochastic Parametric Vibration of Stay Cables[J]. World Bridges, 2008(3):32-35.
[25] Zeng Y, Zhu W Q. Stochastic averaging of quasi-linear systems driven by Poisson white noise[J]. Probabilistic Engineering Mechanics,2010,25(1):99-107.
[26] Zhu H T, Er G K, Iu V P. EPC procedure for PDF solution of non-linear oscillators excited by Poisson white noise[J]. International Journal of Non-Linear Mechanics,2009,44(3): 304-310.
[27] Chen L C, Liu J, Sun J Q. Stationary Response Probability Distribution of SDOF Nonlinear Stochastic Systems[J]. Journal of Applied Mechanics,2017,84(5):050166.
[28] Zhao Y, Sun C, Wang Z. Analytical solutions for resonant response of suspended cables subjected to external excitation[J]. Nonlinear Dynamics,2014,78(2):1017-1032
PDF(1383 KB)

436

Accesses

0

Citation

Detail

Sections
Recommended

/