Parametric instability analysis of rotating truncated conical shells with different boundary conditions

DAI Qiyi1,QIN Zhaoye1,CHU Fulei1,CAO Qingjie2

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (16) : 1-6.

PDF(1273 KB)
PDF(1273 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (16) : 1-6.

Parametric instability analysis of rotating truncated conical shells with different boundary conditions

  • DAI Qiyi1,QIN Zhaoye1,CHU Fulei1,CAO Qingjie2
Author information +
History +

Abstract

In this paper, we studied the parametric vibration characteristics of rotating truncated conical shells with different boundary conditions using the Haar wavelet combined with Floquet exponent method methods. The present work is based on the Love first-approximation theory for classical thin shells. The governing equations of motion for the shell are reduced into a system of Mathieu-Hill equations by means of the Haar wavelet method. In consideration of the fact that Bolotin method could not be applied to gyroscopic systems and the multi-scale method limited to small parameters, Floquet exponent method is employed to conduct parametric stability analysis of rotating truncated conical shells. The correctness of present method is validated by comparing the results with those reported in the literature. In addition, numerical results are presented to bring out the influences of rotation speed and semi-vertex angle on the parametric instability regions of rotating conical shells under four different boundary conditions.

Key words

rotating conical shells / parametric instability / boundary conditions / Floquet exponent method

Cite this article

Download Citations
DAI Qiyi1,QIN Zhaoye1,CHU Fulei1,CAO Qingjie2. Parametric instability analysis of rotating truncated conical shells with different boundary conditions[J]. Journal of Vibration and Shock, 2020, 39(16): 1-6

References

[1] 曹志远. 板壳振动理论[M]. 北京: 中国铁道出版社, 1989.
[2] 韩清凯, 王宇, 李学军. 旋转薄壁圆柱壳的高节径振动特性以及篦齿结构的影响[J]. 中国科学:物理学 力学 天文学, 2013(4): 436-458.
HAN Qingkai, WANG Yu, LI Xuejun. High nodal diameter vibration characteristics of rotating shell and the effects of its sealing teeth[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2013(4): 436-458.
[3] 曹登庆, 孙述鹏, 刘伦. 不平衡转子涡动对鼓筒振动特性影响[J]. 振动与冲击, 2014, 33(2):69-75.
CAO Dengqing, SUN Shupeng, LIU Lun. Effect of unbalanced rotor whirl on drum vibration[J]. Journal of Vibration and Shock, 2014, 33(2):69-75.
[4] 王建军, 韩勤锴, 李其汉. 参数振动系统频响特性研究[J]. 振动与冲击, 2010, 29(3):103-108.
WANG Jianjun, HAN Qinkai, LI Qihan. Frequency response characteristics of parametric vibration system[J]. Journal of Vibration and Shock, 2010, 29(3):103-108.
[5] Ng T Y, Lam K Y, Reddy J N. Parametric resonance of a rotating cylindrical shell subjected to periodic axial loads. Journal of Sound and Vibration, 1998, 214(3): 513-529.
[6] Liew K M, Hu Y G, Ng T Y, et al. Dynamic stability of rotating cylindrical shells subjected to periodic axial loads[J]. International Journal of Solids and Structures, 2006, 43(25):7553–7570.
[7] 辛健强, 王建军. 时变转速下裂纹圆柱壳的参数振动稳定性分析[J]. 航空动力学报, 2011, 26(10):2227-2236.
XIN Jianqiang, WANG Jianjun. Stability analysis of parametric resonance of a crack cylindrical shell with time-varying rotating speed [J]. Journal of Aerospace Power, 2011, 26(10):2227-2236.
[8] Pei Y C. Stability boundaries of a spinning rotor with parametrically excited gyroscopic system[J]. European Journal of Mechanics-A/Solids, 2009, 28(4): 891–896.
[9] Han Q, Chu F. Effects of rotation upon parametric instability of a cylindrical shell subjected to periodic axial loads[J]. Journal of Sound and Vibration, 2013, 332(22):5653–5661.
[10] Han Q, Qin Z, Zhao J, et al. Parametric instability of cylindrical thin shell with periodic rotating speeds[J]. International Journal of Non-Linear Mechanics, 2013, 57(4):201–207.
[11] Han Q, Chu F. Parametric instability of a rotating truncated conical shell subjected to periodic axial loads[J]. Mechanics Research Communications, 2013, 53(5):63–74.
[12] Li X, Du C C, Li Y H. Parametric resonance of a FG cylindrical thin shell with periodic rotating angular speeds in thermal environment[J]. Applied Mathematical Modelling, 2018, 59:393-409.
[13] Turhan O. A generalized bolotin’s method for stability limit determination of parametrically excited systems[J]. Journal of Sound and Vibration, 1998, 216(5): 851–863.
[14] Dai Q Y, Cao Q J, Chen Y S. Frequency analysis of rotating truncated conical shells using the Haar wavelet method[J]. Applied Mathematical Modelling, 2018, 57: 603-613.
[15] Dai Q Y, Cao Q J. Parametric instability analysis of truncated conical shells using the Haar wavelet method[J]. Mechanical Systems and Signal Processing, 2018, 105: 200-213.
[16] 胡海岩. 应用非线性动力学[M ]. 北京:航空工业出版社, 2000.
PDF(1273 KB)

Accesses

Citation

Detail

Sections
Recommended

/