Seismic failure features of multi-span simply supported girder bridges of high-speed railway under near-fault earthquake

GUO Wei1, 2, WANG Yang1, 2,3, GE Cangyu1,2,3, GAO Xia1,2,3, ZONG Shaohan1,2,3, BU Dan4

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (17) : 210-218.

PDF(3065 KB)
PDF(3065 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (17) : 210-218.

Seismic failure features of multi-span simply supported girder bridges of high-speed railway under near-fault earthquake

  • GUO Wei1, 2, WANG Yang1, 2,3, GE Cangyu1,2,3, GAO Xia1,2,3, ZONG Shaohan1,2,3, BU Dan4
Author information +
History +

Abstract

Ride comfort is taken as the priority target in the design of high-speed railway bridges in China to be reflected in the stiffness-based design, and cause indeterminacy of bridges’ aseismic performance and seismic failure features. Here, a 5-span 32 m simply supported girder bridge model was built, and it was composed of piers, supports, girders, track structures, rails, etc. considering interaction between piles and soil of pier group foundation under bridge and effects of vertical force on friction of slide supports. Based on this model, seismic responses of a multi-span simply supported girder bridge under near-field earthquake were studied. Combined with the failure limit of each component, seismic failure features of the structure under earthquake are analyzed. Results showed that failure positions of a high-speed railway bridge under near-fault earthquake are concentrated at beam joint and sliding layer, while pier failure is not serious; in design and assessment of high-speed railway bridges, aseismic performance and failure features of functional components, such as, upper track structure should receive much attention, and destruction of track structure may cause the bridge’s function to be interrupted and huge economic loss.

Key words

high-speed railway / simply supported beam bridge / near-fault earthquake / pier / track structure / failure feature

Cite this article

Download Citations
GUO Wei1, 2, WANG Yang1, 2,3, GE Cangyu1,2,3, GAO Xia1,2,3, ZONG Shaohan1,2,3, BU Dan4. Seismic failure features of multi-span simply supported girder bridges of high-speed railway under near-fault earthquake[J]. Journal of Vibration and Shock, 2020, 39(17): 210-218

References

[1] 包  涵. 高速铁路桥梁桩基础抗震性能研究[D]. 北京交通大学,2014.
[2] 刘培玲. 考虑土桩相互作用的高铁桥梁抗震性能分析[D]. 北京交通大学,2015.
[3] 卢  皓. 罕遇地震作用下高速铁路简支梁桥抗震性能分析[J]. 铁道标准计,2015,(08):102-107.
LU Hao. Study on Seismic Performance of High-speed railway Simply-supported Girder Bridge under Strong Earthquake Motion[J]. RAILWAY STANDARD DESIGN, 2015, (08): 102-107.
[4] 贾俊峰,杜修力,韩强. 近断层地震动特征及其对工程结构影响的研究进展[J]. 建筑结构学报,2015,(01):1-12.
JIA Junfeng, DU Xiuli1, HAN Qiang. A state-of-the-art review of near-fault earthquake ground motion characteristics and effects on engineering structures[J]. Journal of Building Structures, 2015, (01): 1-12.
[5] 王建强,赵云,赵卓,赵军. 近断层地震动作用下隔震曲线桥地震反应分析[J]. 铁道工程学报,2018,(07):47-51
Wang Jianqiang, Zhao Yun, Zhao Zhuo and Zhao Jun. Seismic response of curved isolated bridge under near-fault ground motions. Journal of Railway Engineering Society. 2018,35(07):47-51.
[6] 陈令坤,张楠,夏禾. 方向脉冲及竖向效应对高铁桥梁地震响应影响[J]. 振动工程学报,2016, (04): 705-713
Jiang Hui, Zhu Xi. Effects of directivity pulse and vertical earthquake on seismic response of high-speed railway bridge [J]. Journal of Vibration Engineering. 2016, (04): 705-713.
[7] 李碧雄,廖桥,曾小灵,陈斌. 地震动强度及近断层速度脉冲峰值对简支板桥地震响应影响[J]. 工程科学与技术,2018,(6):1-7.
Li Bixiong, Liao Qiao, Zeng Xiaoling and Chen Bin. Effects on earthquake intensity and peak of near-fault velocity pulse on seismic response of the simply supported slab bridge[J]. Advanced Engineering Sciences. 2018,(6):1-7. https://doi.org/10.15961/j.jsuese.201800566
[8] 闫  斌,戴公连,魏标. 考虑地震行波效应的高铁连续梁桥梁轨互制[J]. 振动与冲击,2014,(05):87-90.
YAN Bin,DAI Gong-lian,WEI Biao. Interaction between CWR and continuous beam bridge carrying high-speed railway under action of seismic traveling wave[J]. JOURNAL OF VIBRATION AND SHOCK, 2014, (05): 87-90.
[9] 江博君,冼巧玲,周福霖. 桩土效应对高铁桥梁地震反应的影响分析[J]. 广州大学学报(自然科学版),2016,(02): 57-63.
JIANG Bo-jun,XIAN Qiao-ling,ZHOU Fu-lin. The influence analysis of the effect of pile-soil contact on the seismic response of the high speed railway bridge[J]. Journal of Guangzhou University(Natural Science Edition), 2016, (02):  57-63.
[10] Li Y, Conte J P. Effects of seismic isolation on the seismic response of a California high‐speed rail prototype bridge with soil‐structure and track‐structure interactions[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(15): 2415-2434.
[11] 中铁第四勘察设计研究院集团有限公司,中铁工程设计咨询集团有限公司. 通桥(2009)2229-IV-无砟轨道预制后张法预应力混凝土简支整孔箱梁[M]. 铁道部经济规划研究院,2011.
[12] 蒋丽忠,邵光强,姜静静,王辉. 高速铁路圆端形实体桥墩抗震性能试验研究[J]. 土木工程学报,2013,(03):86-95.
Jiang Lizhong, 2Shao Guangqiang, Jiang Jingjing, et al. Experimental study on seismic performance of solid piers with round ended cross-section in high-speed railway[J]. CHINA CIVIL ENGINEERING JOURNAL, 2013, (03): 86-95.
[13] 王宏谋. 桥梁盆式橡胶支座的研究与应用[D]. 成都:西南交通大学,2008.
[14] Kent, D.C. and Park, R. (1971), “Flexural members with confined concrete”, J. Struct. Division, 97(7),1969-1990
[15] Filippou F.C., Popov E.P., Bertero V.V. (1983) Effects of bond deterioration on hysteretic behavior of reinforced concrete joints, Report UCB/EERC 83/19.
[16] Boulanger R W, Curras C J, Kutter B L, et al. Seismic soil-pile-structure interaction experiments and analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 750-759.
[17] 株洲时代新材料科技股份有限公司,公路盆式橡胶支座产品选型手册[M]. 株洲时代新材料科技股份有限公司,2014.
[18] 铁工程设计咨询集团有限公司,铁道科学研究院,中铁二院工程集团有限责任公司,铁道第三勘察设计院集团有限公司,铁道第四勘察设计院. 通桥(2007)8360-客运专线铁路常用跨度简支梁盆式橡胶支座安装图[M]. 铁道部经济规划研究院,2007.
[19] 韩之江,郭文龙,刘志华,张岗,郭学兵. 预加力对预应力混凝土梁抗弯刚度影响试验[J]. 中国公路学报,2016,(07):103-109.
HAN Zhi-jiang, GUO Wen-long, LIU Zhi-hua, et al. Experiment on Effect of Pre-tention on Flexural Stiffness of Prestressed Concrete Beam[J]. China Journal of Highway and Transport,  2016, (07): 103-109.
[20] 喻隽雅. 高速铁路典型桥墩的震致弯剪耦合破坏仿真研究[D]. 长沙:中南大学,2016.
[21] 孙治国,陈灿,司炳君,王东升. 考虑非线性剪切效应的RC桥墩抗震分析模型[J]. 工程力学,2015(05):36-44+58.
SUN Zhi-guo, CHEN Can, SI Bing-jun, et al. Seismic Analysis Model Considering Nonlinear Shear Effect For RC Bridge Piers[J]. ENGINEERING MECHANICS, 2015(05): 36-44+58.
[22] 曲  村. 高速铁路长大桥梁无砟轨道无缝线路设计理论及方法研究[D]. 北京交通大学,2013.
[23] 徐  浩,王平,曾晓辉. 高速铁路板式无砟轨道CA砂浆研究现状与展望[J]. 铁道标准设计,2013,(11):1-5+10.
XU Hao1, WANG Ping, ZENG Xiao-hui. Present Research Situation and Prospect of CA Mortar Used in Slab Ballastless Track of High-speed Railway[J]. RAILWAY STANDARD DESIGN, 2013, (11): 1-5+10.
[24] 李  伟. 高速铁路桥上CRTSⅡ型板式无砟轨道温度荷载效应研究[J]. 铁道建筑,2014,(06):122-125.
[25] 朱乾坤. 高速铁路简支梁桥与CRTSⅡ型板式无砟轨道相互作用研究[D]. 中南大学,2013.
[26] 戴公连,粟淼. 剪切荷载下板式无砟轨道界面黏结破坏机理[J]. 华中科技大学学报(自然科学版),2016,(01):16-21.
Dai Gonglian, Su Miao. Mechanism of interfacial bond failure for slab ballastless track under shear loading[J]. Huazhong Univ. of Sci. & Tech. (Nature Science Edition), 2016,(01): 16-21.
[27] GB 50011-2010,建筑结构抗震设计规范[S]. 中国建筑工业出版社,2010.
[28] GB 18306-2015,中国地震动参数区划图[S]. 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2016.
PDF(3065 KB)

607

Accesses

0

Citation

Detail

Sections
Recommended

/