Behavior of dynamic material Q355B steel based on the Johnson-Cook model

LIN Li1,2,HUANG Bo1,XIAO Xinke3,ZHU Yu1,XU Tianli2

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (18) : 231-237.

PDF(2063 KB)
PDF(2063 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (18) : 231-237.

Behavior of dynamic material Q355B steel based on the Johnson-Cook model

  • LIN Li1,2,HUANG Bo1,XIAO Xinke3,ZHU Yu1,XU Tianli2
Author information +
History +

Abstract

As a substitute of Q345 steel, Q355 steel will be largely applied in construction engineering. Due to the demand of structural engineering for shock and explosion, the research on the dynamic material behavior of it is urgent and necessary. Research on the mechanical properties of Q355B steel at different temperatures, stain rate and stain condition were investigated using universal testing machine and split Hopkinson pressure bar system. It was found that plastic flow stress nonlinearly was decreased and fracture stain nonlinearly was increased with the increase of temperature. Then, modified Johnson-Cook constitutive relation and fracture criteria were calibrated respectively by using test results and numerical simulations. Finally, Taylor impact test was carried out to verify the validity of MJC model and its parameter values.

Key words

Q355B steel / Johnson-Cook model / Q355B Steel / dynamic mechanical properties / Taylor impact test

Cite this article

Download Citations
LIN Li1,2,HUANG Bo1,XIAO Xinke3,ZHU Yu1,XU Tianli2. Behavior of dynamic material Q355B steel based on the Johnson-Cook model[J]. Journal of Vibration and Shock, 2020, 39(18): 231-237

References

[1] Zukas JA, Nicholas T, Swift HF, et al. Impact dynamics[J]. Journal of Applied Mechanics, 1983.
[2] 林莉. 网壳结构冲击响应及失效机理精细化研究[D]. 哈尔滨: 哈尔滨工业大学,2015.
LIN Li. Refined study on impact response and failure of Reticulated Shells[D]. Harbin: Harbin Institute of Technology, 2015.
[3] 林莉, 支旭东, 范峰, 等. Q235B钢Johnson-Cook模型参数的确定[J]. 振动与冲击, 2014:33.
LIN Li, ZHI Xu-dong, FAN Feng, et al. Determination of parameters of Johnson-Cook models of Q235B steel[J]. Journal of Vibration and Shock, 2014:33.
[4] 郭子涛, 高斌, 郭钊, 等. 基于JC模型的Q235钢的动态本构关系[J]. 爆炸与冲击, 2018, 38(04): 804-810.
GUO Zi-tao, GAO Bin, GUO Zhao, et al. Dynamic Constitutive relation based on JC Model of Q235 Steel[J]. Explosion and Shock Waves, 2018, 38(04): 804-810.
[5] 郭子涛, 舒开鸥, 高斌, 等. 基于J-C模型的Q235钢的失效准则[J].爆炸与冲击, 2018, 38(06): 1325-1332.
GUO Zi-tao, SHU Kai-ge, GAO Bin, et al. J-C model based failure criterion and verification of Q235 steel[J]. Explosion and Shock Waves, 2018, 38(06): 1325-1332.
[6] Johnson G. R, Cook W. H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[M]. In: Seventh International Symposium on Ballistics, 1983: 541-547.
[7]  Johnson G. R, Cook W. H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48.
[8] Xiao X, Zhang W, Wei G, et al. Experimental and numerical investigation on the deformation and failure behavior in the Taylor test[J]. Materials & Design, 2011, 32(5): 2663-2674.
[9] 肖新科, 陈琳, 杜太生.7075-T651铝合金靶板剪切冲塞的试验和数值模拟研究[J].振动与冲击, 2019, 38(3):51-58.
XIAO Xin-ke, CHEN Lin, DU Tai-sheng. Tests and numerical simulation for shear plugging of 7075-T651 aluminium alloy targets[J] Journal of Vibration and Shock,2019,38(3):51-58.
[10] 陈刚, 陈忠富, 徐伟芳, 等. 45钢的JC损伤失效参量研究[J]. 爆炸与冲击, 2007, 27(2): 131-135.
CHEN Gang, CHEN Zhong-fu, XU Weifang, et al. Investigation on the JC ductile fracture parameters of 45 steel[J]. Explosion and Shock Waves, 2007, 27(2): 131-135.
[11] 范亚夫, 段祝平. Johnson-Cook材料模型参数的实验测定[J]. 力学与实践, 2003, 5(25): 40-43.
FAN Ya-fu, DUAN Zhu-ping. Cylinder Explosive Test and Material Model of Johnson-Cook[J]. Mechanics in Engineering, 2003, 5(25): 40-43.
[12] 黄晓莹, 陶俊林. 三种建筑钢筋材料高应变率下拉伸力学性能研究[J]. 工程力学, 2016, 33(7): 184-189.
HUANG Xiao-ying, TAO Jun-lin. Tensile Mechanical Properties Research of Three Construction Steel Bars in High Strain Rate[J]. Engineering Mechanics, 2016, 33(7): 184-189.
[13] 李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数[J]. 高压物理学报, 2017, 31(3): 239-248.
LI Lei, ZHANG Xian-feng, WU Xue, et al. Dynamic Constitutive and Damage Parameters of 30CrMnSiNi2A Steel with Different Hardnesses[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239-248.
[14] 王卫永, 闫守海, 张琳博, 等. Q345钢高温蠕变试验及考虑蠕变后钢柱抗火性能研究[J]. 建筑结构学报, 2016, 37(11): 47-54.
WANG Wei-yong, YAN Shou-mei, ZHANG Lin-bo, et al. Creep Test on Q345 Steel at Elevated Temperature and Fire Resistance of Steel Columns Considering Creep[J]. Journal of Building Structures, 2016, 37(11): 47-54.
[15] 伍星星, 刘建湖, 张伦平, 等. 尖头弹侵彻金属板花瓣型破口成形过程仿真分析[J].中国舰船研究, 2018, 13(03): 110-117.
WU Xing-xing, LIU Jian-hu ZHANG Lun-ping, et al. Numerical simulation analysis of petaling formation process of plate penetrated by sharp-nosed missile[J]. Chinese Journal of Ship Research, 2018, 13(03): 110-117.
[16] 肖新科. 双层金属靶的抗侵彻性能和Taylor杆的变形与断裂[D]. 哈尔滨: 哈尔滨工业大学, 2010.
XIAO Xin-ke. The Ballistic Resistance of Double-Layered Metallic Target and the Deformation & Fracture of Taylor Rod[D]. Harbin: Harbin Institute of Technology,2010.
[17] XIAO Xin-ke, MU Zhong-cheng, PAN Hao, et al. Effect of the Lode parameter in predicting shear cracking of 2024-T351 aluminum alloy Taylor rods[J]. International Journal of Impact Engineering, 2018, 120: 185-201.
[18] 司马玉洲, 肖新科, 王要沛, 等.7A04-T6高强铝合金板对平头杆弹抗侵彻行为的试验与数值模拟研究[J].振动与冲击, 2017, 36(11):1-7.
SI MA Yu-zhou, XIAO Xin-ke, WANG Yao-pei, et al. Tests and numerical simulation for anti-penetrating behavior of a high strength 7A04-T6 aluminium alloy plate against a blunt projectile’s impact[J]. Journal of Vibration and Shock,2017,36(11):1-7.
[19] Bridgman PW. Studies in Large Plastic Flow and Fracture[M]. New York: Mc Graw-Hill, 1952.
[20] XIAO Xin-ke, PAN Hao, BAI Yuan-li, et al. Application of the modified Mohr-Coulomb fracture criterion in predicting the ballistic resistance of 2024-T351 aluminum alloy plates impacted by blunt projectiles [J].International Journal of Impact Engineering[J]. 2019, 123: 26-37.
PDF(2063 KB)

Accesses

Citation

Detail

Sections
Recommended

/