Performance degradation trend prediction of rolling bearings based on SPA-FIG and optimized ELM

CHEN Qiangqiang1,2, DAI Shaowu1, DAI Hongde3, ZHU Min1, SUN Yuyu4

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (19) : 187-194.

PDF(1882 KB)
PDF(1882 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (19) : 187-194.

Performance degradation trend prediction of rolling bearings based on SPA-FIG and optimized ELM

  • CHEN Qiangqiang1,2, DAI Shaowu1,  DAI Hongde3, ZHU Min1, SUN Yuyu4
Author information +
History +

Abstract

In order to improve prediction accuracy of rolling bearing performance degradation index, and obtain an accurate prediction range of performance degradation index, a novel performance degradation trend prediction method based on smooth prior analysis (SPA)-fuzzy information granulation (FID) and optimized extreme learning machine (ELM) was proposed.Firstly, SPA was used to extract the trend term and fluctuation term of bearing performance degradation index sequences, and FIG was used to do fuzzy information granulation for the fluctuation term.Then, the trend term and the granulated fluctuationtermwere input into ELM to perform regression prediction, and the particle swarm optimization (PSO) was used to optimize ELM parameters. Finally, the excellence of the prediction model was estimated according to the contrastive analysis of the measured values and the predicted ones. Test results showed that the proposed method can effectively track the change trend of bearing performance degradation index and predict the fluctuation range of the index.

Key words

rolling bearing / trend prediction / fuzzy information granulation(FIG) / extremelearning machine (ELM) / smooth prior analysis (SPA)

Cite this article

Download Citations
CHEN Qiangqiang1,2, DAI Shaowu1, DAI Hongde3, ZHU Min1, SUN Yuyu4. Performance degradation trend prediction of rolling bearings based on SPA-FIG and optimized ELM[J]. Journal of Vibration and Shock, 2020, 39(19): 187-194

References

 [1] 边杰. 基于遗传算法参数优化的变分模态分解结合1.5维谱的轴承故障诊断[J]. 推进技术, 2017, 38(07): 1618-1624.
BIAN Jie. Fault Diagnosis of Bearing Combining Parameter Optimized Variational Mode Decomposition Based on Genetic Algorithm with 1.5-Dimensional Spectrum[J]. Journal of Propulsion Technology, 2017, 38(07): 1618-1624.
 [2] 陈果. 含复杂滚动轴承建模的航空发动机整机振动耦合动力学模型[J]. 航空动力学报, 2017, 32(09): 2193-2204.
CHEN Guo. Whole aero-engine vibration coupling dynamics model including modeling of complex ball and roller bearings[J]. Journal of Aerospace Power. 2017, 32(09): 2193-2204.
 [3] 许迪,葛江华,王亚萍,等. 流形学习和M-KH-SVR的滚动轴承衰退预测[J]. 振动工程学报, 2018, 31(05): 892-901.
XU Di, GE Jianghua, WANG Yaping, et al. Prediction of rolling bearing performance degradation based on manifold learning and M-KH-SVR[J]. Journal of Vibration Engineering. 2018, 31(05): 892-901.
 [4] GANGSAR P, TIWARI R. Multiclass Fault Taxonomy in Rolling Bearings at Interpolated and Extrapolated Speeds Based on Time Domain Vibration Data by SVM Algorithms[J]. Journal of Failure Analysis & Prevention, 2014, 14(6): 826-837.
 [5] 周建民,张臣臣,王发令,等. 基于ARMA的滚动轴承振动数据预测[J]. 华东交通大学学报, 2018, 35(05): 99-103.
ZHOU Jianmin, ZHANG Chenchen, WANG Faling, et al. Rolling bearing vibration data prediction based on ARMA[J]. Journal of East China Jiaotong University, 2018, 35(05): 99-103.
 [6] 陈法法,杨勇,马婧华,等. 信息熵与优化LS-SVM的轴承性能退化模糊粒化预测术[J]. 仪器仪表学报, 2016, 37(4): 779-787.
CHEN Fafa, YANG Yong, MA Jinghua, et al. Fuzzy granulation prediction for bearing performance degradation based on information entropy and optimized LS-SVM[J]. Chinese Journal of Scientific Instrument, 2016, 37(4): 779-787.
 [7] 王付广. 基于ELM的滚动轴承退化趋势与剩余寿命预测方法研究[D]. 安徽工业大学, 2018.
WANG Fuguang. Research on the degradation trend and residual life prediction method of rolling bearing based on ELM[D]. Anhui University of Technology, 2018 .
 [8] 李艳军,张建,曹愈远,等. 基于模糊信息粒化和优化SVM的航空发动机性能趋势预测[J]. 航空动力学报, 2017, 32(12): 3022-3030.
LI Yanjun, ZHANG Jian, CAO Yuyuan, et al. Forecasting of aero-engine performance trend based on fuzzy information granulation and optimized SVM[J]. Journal of Aerospace Power. 2017, 32(12): 3022-3030.
 [9] 柳玉,曾德良,刘吉臻,等. 基于小波包变换的最小二乘支持向量机短期风速多步预测和信息粒化预测的研究[J]. 太阳能学报, 2014, 35(02): 214-220.
LIU Yu, CENG Deliang, LIU Jizen, et al. Wavelet packet transform and the least squares support machine in research of short-term wind speed multistep prediction and information granulation prediction[J]. Acta Energiae Solaris Sincia, 2014, 35(02): 214-220.
[10] 陈法法,杨勇,陈保家,等. 基于模糊信息粒化与小波支持向量机的滚动轴承性能退化趋势预测[J]. 中国机械工程, 2016, 27(12): 1655-1661.
CHEN Fafa, YANG Yong, CHEN Baojia, et al. Degradation Trend prediction of rolling bearings based on fuzzy information granulation and wavelet support vector machine[J]. China Mechanical Engineering, 2016, 27(12): 1655-1661.
[11] ZADEH L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems, 1997, 90(2): 111-127.
[12] 黄海峰,易武,易庆林,等. 滑坡位移分解预测中的平滑先验分析方法[J]. 水文地质工程地质, 2014, 41(05): 95-100.
HUANG Haifeng, YI Wu, YI Qinglin, et al. Smoothness priors approach in displacement decomposition and prediction of landslides[J]. Hydrogelogy & Engineering Geology. 2014, 41(05): 95-100.
[13] 李洪儒,于贺,田再克,等. 基于二元多尺度熵的滚动轴承退化趋势预测[J]. 中国机械工程, 2017, 28(20): 2420-2425.
LI Hongru, YU He, TIAN Zaike, et al. Degradation trend prediction of rolling bearings based on two-element multiscale entropy[J]. China Mechanical Engineering, 2017, 28(20): 2420-2425.
[14] CHRISTOPH B, BERND P. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17): 102-104.
[15] LI G, MA X, YANG H. A Hybrid Model for Monthly Precipitation Time Series Forecasting Based on Variational Mode Decomposition with Extreme Learning Machine[J]. Information, 2018, 9(7): 177.
[16] CHEN X, CUI B. Efficient modeling of fiber optic gyroscope drift using improved EEMD and extreme learning machine[J]. Signal Processing, 2016, 128: 1-7.
[17] GARCÍAGONZALO E, FERNÁNDEZMARTÍNEZ J L. A Brief Historical Review of Particle Swarm Optimization (PSO)[J]. Journal of Bioinformatics & Intelligent Control, 2012, 1(1): 3-16.
[18] 李滨,覃芳璐,吴茵,等. 基于模糊信息粒化与多策略灵敏度的短期日负荷曲线预测[J]. 电工技术学报, 2017, 32(09): 149-159.
LI Bin, QIN Fanglu, WU Yin, et al. Short-term daily liad curve forecasting based on fuzzy information granulation and multi-straegy sensitivity[J]. Transactions of China Electro Technical Society, 2017, 32(09): 149-159.
[19] 冯辅周,司爱威,江鹏程. 小波相关排列熵和HMM在故障预测中的应用[J]. 振动工程学报, 2013, 26(02): 269-276.
FENG Fuzhou, SI Aiwei, JIANG Pengcheng. Application of wavelet correlation permutation entropy and hidden Markov model to fault prognostic[J]. Journal of vibration Engineering, 2013, 26(02): 269-276.
[20] WANG W, LU Y. Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model[J]. 2018, 324(1): 120-129.
PDF(1882 KB)

269

Accesses

0

Citation

Detail

Sections
Recommended

/