
Dynamic response and trench development of deep-sea steel catenary riser touchdown section under floating bodies’ heave excitation
ZHENG Mengtian1,2, YUAN Yuchao1,2, XUE Hongxiang1,2, TANG Wenyong1,2
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (21) : 34-41.
Dynamic response and trench development of deep-sea steel catenary riser touchdown section under floating bodies’ heave excitation
steel catenary riser / nonlinear riser-soil interaction / trench development / parametric sensitivity / dynamic response {{custom_keyword}} /
[1] 孟庆飞, 黄维平, 刘建军. 深水钢悬链式立管与浮式平台整体分析方法研究[J]. 振动与冲击, 2013, 32(17): 19-23.
MENG Qingfei, HUANG Weiping, Liu Jianjun. Integrated analysis of deepwater SCR and floating platform [J]. Journal of Vibration and Shock, 2013, 32(17): 19-23.
[2] 孟丹. 钢悬链线输流立管顶部浮体激励非线性响应研究[J]. 振动与冲击, 2013, 32(4): 96-101.
MENG Dan. Nonlinear Dynamic Responses of Fluid-conveying Steelcatenary Riser Subjected to Top Excitation. Journal of Vibration and Shock, 2013, 32(4): 96-101.
[3] 王坤鹏, 薛鸿祥, 唐文勇. 基于海床吸力和刚度衰减模型的深海钢悬链线立管动力响应分析[J]. 上海交通大学学报, 2011, 45(04): 585-589+596.
WANG Kunpeng, XUE Hongxiang, TANG Wenyong. Dynamic Response Analysis of Deepwater Steel Catenary Riser Based on the Seabed-Suction and Stiffness-Degradation Model [J]. Journal of Shanghai Jiaotong University, 2011, 45(04): 585-589+596.
[4] Aubeny C P, Biscontin G. Seafloor-riser interaction model [J]. International Journal of Geomechanics, 2009, 9(3): 133-141.
[5] Randolph M, Quiggin P. Non-linear hysteretic seabed model for catenary pipeline contact [C] // Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering. Honoluu, Hawaii: ASME, 2009: 145-154.
[6] 白兴兰, 黄维平, 谢永和, 等. 基于非线性海床刚度模型的钢悬链线立管动力响应分析[J]. 振动与冲击, 2015, 34(21): 82-88.
BAI Xinglan, HUANG Weiping, XIE Yonghe, et al. Dynamic Response Analysis of Steel Catenary Riser Based on the Nonlinear Seabed Stiffness Model. Journal of Vibration and Shock, 2015, 34(21): 82-88.
[7] 周阳, 杨超凡, 黄维平. 海床土刚度非线性的钢悬链式立管响应分析[J]. 哈尔滨工程大学学报, 2017, 38(03): 356-362.
ZHOU yang, YANG Chaofan, HUANG Weiping. Dynamic response analysis of steel catenary riser based on nonlinear stiffness of seabed [J]. Journal of Harbin Engineering University, 2017, 38(03): 356-362.
[8] 陈振新, 李捍平, 李世强, 等. 考虑非线性管-土接触模型的钢悬链线立管触地区动态曲率分析[J]. 海洋工程, 2018, 36(06): 77-83.
CHEN Zhenxin, LI Hanping, LI Shiqiang, et al. Dynamic curvature in catenary risers at the touch down zone considering nonlinear riser-soil interaction [J]. The Ocean Engineering, 2018, 36(06): 77-83.
[9] 常爽, 黄维平, 杨超凡. 非线性管土作用下钢悬链式立管动力响应分析[J]. 中国海洋大学学报(自然科学版), 2018, 48(05): 111-118.
CHANG Shuang, HUANG Weiping, YANG Chao-fan. The influence of nonlinear riser-soil interaction on the dynamic response of steel catenary riser [J]. Periodical of Ocean University of China, 2018, 48(05): 111-118.
[10] Xinglan Bai, Weiping Huang, Murilo Augusto Vaz, et al. Riser-soil interaction model effects on the dynamic behavior of a steel catenary riser [J]. Marine Structures, 2015, 41.
[11] Rasoul H, Mehrdad K. Equivalent linear soil stiffness in fatigue design of steel catenary risers [J]. Ocean Engineering, 2016, 111.
[12] Hodjat S. Response of steel catenary risers on hysteretic non-linear seabed [J]. Applied Ocean Research, 2014, 44.
[13] Muraleedharan, A, Kimiae M. Comparing Results of Time Domain Fatigue Design of Steel Catenary Risers Using Linear and Nonlinear Riser Soil Interaction Models Under Random Waves [C] // Offshore Technology Conference, Kuala Lumpur, Malaysia, Paper OTC-28571-MS.
[14] Xiaoyu Dong, Hodjat Shiri. Performance of non-linear seabed interaction models for steel catenary risers, part II: global response [J]. Applied Ocean Research, 2019, 82.
[15] Lizhong Wang, Ju Zhang, Feng Yuan, et al. Interaction between catenary riser and soft seabed: Large-scale indoor tests [J]. Applied Ocean Research, 2014, 45.
/
〈 |
|
〉 |