Impact damage boundary of spacecraft plug-in components

XU Zijian1, NANGONG Zijun1,2, LI Bingwei1, ZHANG Zijun1, YU Muchun1, NIU Zhiling1

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (21) : 71-78.

PDF(1931 KB)
PDF(1931 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (21) : 71-78.

Impact damage boundary of spacecraft plug-in components

  • XU Zijian1,  NANGONG Zijun1,2,  LI Bingwei1,  ZHANG Zijun1,  YU Muchun1,  NIU Zhiling1
Author information +
History +

Abstract

Spacecraft plug-in components can be damaged easily under serious shock environment to affect harmfully normal operation of aerospace electronic equipment, and even cause flight accidents.Impact dynamic response analysis was used to construct the impact damage boundary of plug-in components.Aiming at a frequently used plug-in component in spacecraft called Sub-Miniature-A (SMA) RF coaxial connector, numerical simulation and impact tests were conducted to verify its impact damage boundary.Results showed that when the dominant frequency of shock environment is lower than the first order natural frequency of SMA connector, its impact damage boundary is the absolute acceleration response asymptote of shock environment; when the dominant frequency of shock environment is higher than the first order natural frequency of SMA connector, its impact damage boundary is the relative displacement response asymptote of shock environment; the study results can provide an important base for the equivalent technique study of impact test conditions based on damage equivalent and the environmental adaptability design of spacecrafts.

Key words

spacecraft / shock environment / plug-in components / damage boundary / impact response spectrum

Cite this article

Download Citations
XU Zijian1, NANGONG Zijun1,2, LI Bingwei1, ZHANG Zijun1, YU Muchun1, NIU Zhiling1. Impact damage boundary of spacecraft plug-in components[J]. Journal of Vibration and Shock, 2020, 39(21): 71-78

References

[1] 丁继锋, 赵欣, 韩增尧. 航天器火工冲击技术研究进展[J]. 宇航学报, 2014, 35(12): 1339-1349.
DING Jifeng, ZHAO Xin, HAN Zengyao. Research Development of Spacecraft Pyroshock Technique[J]. Journal of Astronautics, 2014, 35(12): 1339-1349.
[2] Bement Laurence J. Pyrotechnic system failures: Causes and prevention[R]. NASA, 1988.
[3] 向树红. 航天器力学环境试验技术[M].  中国科学技术出版社, 2010.
XIANG Shuhong. THE TEST TECHNOLOGY OF SPACECRAFT MECHANICS ENVIRONMENTS[M]. China Science&Technology Press, 2010.
[4] 张建华. 航天产品的爆炸冲击环境技术综述[J]. 导弹与航天运载技术, 2005, (3): 30-36.
ZHANG Jianhua. Pyroshock Environment of Missiles and Launch Vehicles[J]. Missiles and Space Vehicles, 2005, 276(3): 30-36.
[5] Zhang M., Xiang S. Review of recent advances in pyroshock for space system[J]. Vibroengineering Procedia, 2014, 4: 86-90.
[6] 焦超锋,任康,姜红明,等. 通孔元器件引脚断裂分析[J]. 电子机械工程,2011, 27(1):15-18.
JIAO Chao-feng, REN Kang, JIANG Hong-ming, et al. Pin Breakage Analysis for the Through-hole Components[J]. Electro-Mechanical Engineering, 2011, 27(1):15-18.
[7] 卢来洁, 马爱军, 冯雪梅. 冲击响应谱试验规范述评[J]. 振动与冲击, 2002, 21(2): 18-20.
Lu Laijie, Ma Aijun, Feng Xuemei. A REVIEW OF SHOCK RESPONSE SPECTRUM TEST STANDARD[J]. Journal of Vibration and Shock, 2002, 21(2): 18-20.
[8] NASA-STD-7003. Pyroshock test criteria[S], 1999.
[9] GJB150A-2009. 军用装备试验室环境试验方法[S], 2009.
GJB150A-2009. Military equipment laboratory environment test method[S]. 2009.
[10] 杨新峰, 邹轶群, 邓卫华, 等. 航天器组件高量级冲击环境的一种评估方法[J]. 宇航学报, 2017, (08).
YANG Xin-feng, ZOU Yi-qun, DENG Wei-hua, et al. An Approach to Evaluate High Level Shock for Aerospace Units[J]. Journal of Astronautics, 2017, 38(08):872-878.
[11] Gaberson H. A. Pseudo velocity shock spectrum rules for analysis of mechanical shock[C]. IMAC XXV, 2007.
[12] Gaberson Howard A. Shock Severity Estimation[J]. Sound & Vibration, 2012, 46(1): 12-20.
[13] Irvine Tom. Shock severity limits for electronic component[J]. Rev B, Vibrationdata, 2014.
[14] Irvine Tom. Shock and vibration stress as a function of velocity[J]. Revision A, Vibrationdata, 2010.
[15] Irvine Tom. Using a random vibration test specification to cover a shock requirement via a pseudo velocity fatigue damage spectrum[J]. Procedia Engineering, 2015, 101: 211-218.
[16] H.A. Gaberson, R.S. Chapler. Shock spectrum classification of violent environments that cause machinery failure[C]. Proceedings of the 18th International Modal Analysis Conference, 2000.
[17] Li B.W., Li Q.M. Damage boundary of structural components under shock environment[J]. International Journal of Impact Engineering, 2018, 118: 67-77.
[18] 俞佳江, 韦锡峰, 肖文斌. 位移损伤判据在卫星冲击试验中的应用[J]. 上海航天, 2014, 31: 95-97, 139.
YU Jia-jiang, WEI Xi-feng, XIAO Wen-bin. Application of Displacement Damage Criterion in Satellite Shock Test[J]. Aerospace Shanghai, 2014, 31: 95-97, 139.
[19] 王乾勋, 闫明, 金昊, 等. 舰船电器设备中簧片式触点开关的冲击破坏潜能分析[J]. 机械科学与技术, 2017, (06).
Wang Qianxun, Yan Ming, Jin Hao, et al. Analysis of Potential Shock Damage for Reed Contact Switch of Naval Ships’ Electrical Equipment[J]. Mechanical Science and Technology for Aerospace Engineering. 2017, (06).
[20] Li Bingwei, Li Qingming, Liu Bo, et al. Critical Shock Response Spectrum of A Beam Under Shock Loading[C]. ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, 2016.
[21] Bingwei Li, Xuejun Zhu, Zijian Xu, et al. Study on shock environment test condition of spacecraft based on the pseudo velocity shock response spectrum[C]. 2nd International Conference on Impact Loading of Structures and Materials, 2018.
[22] Biot Maurice A. Transient oscillations in elastic systems. General theorems. Vibrations of buildings during earthquake. Critical torsional vibrations of accelerated rotating shafts[D].  California Institute of Technology, 1932.
[23] Lalanne Christian. Mechanical Shock: Mechanical Vibration and Shock Analysis, Volume 2, Second Edition[M].   2010.
[24] 张华. 飞行器结构力学环境虚拟技术研究[D].  西北工业大学, 2007.
ZHANG Hua. Virtual test technology of space vehicles’ structure dynamical environment[D]. Northwestern Polytechnical University, 2007.
PDF(1931 KB)

336

Accesses

0

Citation

Detail

Sections
Recommended

/