Wet modal tests and numerical simulation for a rigid-liquid-flexible coupled structure

CAI Kelun1,2, LIU Yuhong1,2, ZHU Yaqiang1,2, HUANG Cheng1,2, ZHANG Lianhong1,2

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (23) : 128-134.

PDF(1876 KB)
PDF(1876 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (23) : 128-134.

Wet modal tests and numerical simulation for a rigid-liquid-flexible coupled structure

  • CAI Kelun1,2, LIU Yuhong1,2, ZHU Yaqiang1,2, HUANG Cheng1,2, ZHANG Lianhong1,2
Author information +
History +

Abstract

Based on physical model tests and finite element simulation, modal characteristics of a rigid-liquid-flexible coupled structure, a miniature model of “haiyan” underwater glider, was studied.Using hammering method, this structure’s wet modal frequencies and modal shapes characteristics under 3 different liquid-filled water pressures were measured.It was found that the structure has good vibration absorption action.Meanwhile, based on the acoustic-structure coupled algorithm of ANSYS Workbench software platform, the wet modal analysis of this structure was performed under different internal and external pressures to study variation of its wet modal frequencies and modal shapes.Analysis results showed that liquid additional mass effect can’t be ignored during modal analysis of this structure; increase in internal and external pressures can cause the structure’s wet modal frequencies to drop; the study results can provide a reference for wet modal analysis of relevant structures.

Key words

solid-liquid-flexible coupling / wet mode / acoustic-structure coupling / modal simulation

Cite this article

Download Citations
CAI Kelun1,2, LIU Yuhong1,2, ZHU Yaqiang1,2, HUANG Cheng1,2, ZHANG Lianhong1,2. Wet modal tests and numerical simulation for a rigid-liquid-flexible coupled structure[J]. Journal of Vibration and Shock, 2020, 39(23): 128-134

References

[1] 杨亚楠. 温差能—电能复合动力水下滑翔机系统设计与性能分析[D]. 天津大学, 2017.
YANG Yanan. System Design and Performance Analysis of Thermal-Electric Hybrid Power Underwater Glider[D]. Tianjin University, 2017. 
[2] 何志纲. 温差能水下滑翔机中性壳体与驱动装置研究[D]. 天津大学, 2013.
HE Zhigang. Research on Neutral Shell and Drive System
Used by Thermal Gliders[D]. Tianjin University, 2013.
[3] YAMAMOTO Hiroyuki,SHIBUYA Koji. New Small Buoyancy Control Device With Silicone Rubber For Underwater Vehicles[J]. The Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec), 2016, 2016(0).
[4] 段宝生. 深水AUV系统湿模态分析[J]. 海岸工程, 2016,  35(04): 51-57.
DUAN Baosheng. Wet modal analysis of deep water AUV system[J]. Coastal Engineering, 2016, 35(04): 51-57.
[5] 张光法. 潜深对半潜器附加质量影响分析[J]. 舰船电子工程, 2012, 32(11): 9-10.
ZHANG Guangfa. Analysis of influence of submerged depth on adds mass of semi-submerged device[J]. Ship Electronic Engineering, 2012, 32(11): 9-10.
[6] 姜峰, 郑运虎, 梁瑞, 等. 海洋立管湿模态振动分析[J].西南石油大学学报(自然科学版), 2015, 37(05): 159-166.
JIANG Feng, ZHENG Yunhu, LIANG Rui, et al. An analysis of the wet modal vibration of marine riser[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2015, 37(05): 159-166.
[7] Xiang Y, Zhang L H, Wang Y H, et al. Wet Modal Analysis of a Deep-sea Autonomous Underwater Vehicle[C]//Advanced Materials Research. Switzerland:  Trans Tech Publications, 2012, 546: 171-175.
[8] 郑继周, 程林, 杜文静. 充液弹性管束流固耦合系统模态分析[J]. 山东大学学报(工学版), 2007(04): 55-59.
ZHENG Jizhou, CHENG Lin, DU Wenjing. Modal analysis of liquid-filled elastic tube bundles[J]. Journal of Shandong University(Engineering Science), 2007(04): 55-59.
[9] 王子龙, 王延辉, 刘玉红, 等. 海洋微结构湍流垂直剖面仪模态分析方法[J]. 机械设计, 2012, 29(04): 89-92.
WANG Zilong, Wang Yanhui, LIU Yuhong, et al.Modal analysis method of ocean microstructure turbulence vertical profiler[J]. Journal of Machine Design, 2012,29(04):89-92.
[10] 杨吉新, 张可, 党慧慧. 基于ANSYS的流固耦合动力分析方法[J]. 船海工程, 2008, 37(06): 86-89.
YANG Jixin, Zhang Ke, DANG Huihui. Dynamic Analysis Method for Fluid-Structure Interaction Based on ANSYS[J]. Ship & Ocean Engineering, 2008, 37(06): 86-89.
[11] 武大江, 梅志远, 王永历. 充水密加筋夹层结构固有特性仿真及试验研究[J]. 振动与冲击, 2016, 35(15): 134-139.
WU Dajiang, MEI Zhiyuan, WANG Yongli. Natural characteristics simulation and tests for water-filled multi-stiffened sandwich structures[J]. Journal of Vibration and Shock, 2016, 35(15): 134-139.
[12] 王在铎, 马斌捷, 贾亮, 等. 水下附加质量及阻尼的试验研究[J]. 强度与环境, 2018, 45(03): 15-19.
WANG Zaiduo, MA Binjie, JIA Liang, et al. Experimental study of added mass and damping in water[J]. Structure & Environment Engineering, 2018, 45(03): 15-19.
[13] 缪旭弘, 钱德进, 姚熊亮, 等. 基于ABAQUS 声固耦合法的水下结构声辐射研究[J]. 船舶力学, 2009, 13(2): 319-324.
MIAO Xuhong, QIAN Dejin, YAO Xiongliang, et al. Sound radiation of underwater structure based on coupled
acoustic-structural analysis with ABAQUS[J]. Journal of Ship Mechanics, 2009, 13(2): 319-324.
[14] 陈炜彬, 段浩, 王云. 基于声固耦合算法的发射模拟试验承压结构湿模态分析[J]. 水下无人系统学报, 2017, 25(05): 365-370.
CHEN Weibin, DUAN Hao, WANG Yun.Wet Modal Analysis of Pressurized Structure in Launcher Simulation
Experiment Based on Sound-Structure Coupling Algorithm[J]. Journal of Unmanned Undersea Systems, 2017, 25(05): 365-370.
[15] 范文娟. 基于ANSYS的橡胶坝数值模拟研究[D]. 华北水利水电大学, 2018.
FAN Wenjuan. Research on Numerical Simulation of Rubber Dam Based on ANSYS[D]. North China University of Water Resources and Electric Power, 2018.
[16] 张明飞. 基于流固耦合的压气机叶片静力及模态分析[D]. 哈尔滨工程大学, 2016.
ZHANG Mingfei. Static and Modal Analysis of Compressor Blade Based On the Fluid-Structure Interaction[D].  Harbin Engineering University, 2016.
PDF(1876 KB)

526

Accesses

0

Citation

Detail

Sections
Recommended

/