Overall self-adaptive precision integration method for solving an undamped system under arbitrary excitation

CHEN Dongliang, WANG Lianfu, ZANG Rui, ZHOU Changhe, GONG Chen, ZHANG Jindong

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (23) : 47-51.

PDF(652 KB)
PDF(652 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (23) : 47-51.

Overall self-adaptive precision integration method for solving an undamped system under arbitrary excitation

  • CHEN Dongliang, WANG Lianfu, ZANG Rui, ZHOU Changhe, GONG Chen, ZHANG Jindong
Author information +
History +

Abstract

Aiming at calculation precision and efficiency problems of solving an undamped system, the overall self-adaptive precision integration method was studied.Padé approximation and Simpson formula were used to analyze the relationship between matrix exponent and fine parameters of Duhamel integral term in solving differential equations, and then the overall self-adaptive precision integration method for solving a vibration differential equation set was proposed.It was shown that thismethod can be used to do self-adaptive integration according to different precision requirements, and keep its computational accuracy under high frequency excitation; this method is beneficial to solve vibration responses under high frequency excitation and improve computational efficiency.Numerical examples verified the effectiveness of the proposed method.

Key words

Padé / approximation / Duhamel integral / self-adaptive / precision integration

Cite this article

Download Citations
CHEN Dongliang, WANG Lianfu, ZANG Rui, ZHOU Changhe, GONG Chen, ZHANG Jindong. Overall self-adaptive precision integration method for solving an undamped system under arbitrary excitation[J]. Journal of Vibration and Shock, 2020, 39(23): 47-51

References

[1] 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994(2):131-136.
Zhong W X. On precise time-integration method for structural dynamics[J]. Journal of Dalian University of Technology, 1994, 34(2): 131-136.
[2] 刘勇, 沈为平. 精细时程积分中状态转换矩阵的自适应算法[J]. 振动与冲击, 1995(2):82-85.
Liu Y, Shen W P. Adaptive algorithm for state-transition matrix in precise time step integration method[J]. Journal of Vibration and Shock, 1995(2): 82-85.
[3] 徐明毅, 张勇传. 精细辛几何算法的误差估计[J]. 数学物理学报, 2006, 26(2).
Xu M Y, Zhang Y C. Accuracy Estimation of Precise Symplectic Integration Method[J]. Acta Mathematica Scientia, 2006, 26(2).
[4] Moler C, Van Loan C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later[J]. SIAM review, 2003, 45(1): 3-49.
[5] 谭述君, 吴志刚, 钟万勰. 矩阵指数精细积分方法中参数的自适应选择[J]. 力学学报, 2009, 41(6): 961-966.
Tan S J, Wu Z G, Zhong W X. Adaptive selection of parameters for precise computation of matrix exponential based on Padé approximation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 961-966.
[6] 向宇, 黄玉盈, 黄健强. 一种新型齐次扩容精细积分法[J]. 华中科技大学学报: 自然科学版, 2002, 30(11): 74-76.
Xiang Y, Huang Y Y, Huang J Q. A method of homogenization of high precision direct integration[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2002, 30(11): 74-76.
[7] 凌明祥, 韩宇航, 朱长春, 等. 非线性动力方程的三次样条-增维精细算法[J]. 计算力学学报, 2014(6).
Ling M X, Han Y H, Zhu C C, et al. Increment-dimensional precise integration method based on cubic spline interpolation for nonlinear dynamic equation[J]. Chinese Journal of Computational Mechanics, 2014(06).
[8] 梅树立, 张森文, 徐加初. 结构非线性动力学方程的自适应精细积分算法[J]. 华南理工大学学报(自然科学版), 2003, 31(S1):133-135.
Mei S L, Zhang S W, Xu J C. Adaptive precise integration algorithm for nonlinear dynamical equation[J]. Journal of South China University of Technology(Natural Science Edition), 2003, 31(S1):133-135.
[9] Mathews J H, Fink K D. Numerical methods using MATLAB[M]. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.
[10] Lin J, Shen W, Williams F W. Accurate high-speed computation of non-stationary random structural response. Engineering Structures, 1997, 19(7): 586-593.
PDF(652 KB)

361

Accesses

0

Citation

Detail

Sections
Recommended

/