Longitudinal vibration reduction of ship propulsion shafting based on quasi-zero-stiffness isolator

ZHAO Han1, YANG Zhirong2, TA Na1, RAO Zhushi1

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (23) : 90-95.

PDF(1089 KB)
PDF(1089 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (23) : 90-95.

Longitudinal vibration reduction of ship propulsion shafting based on quasi-zero-stiffness isolator

  • ZHAO Han1, YANG Zhirong2, TA Na1, RAO Zhushi1
Author information +
History +

Abstract

Based on static characteristics study of two quasi-zero-stiffness (QZS) isolators, effects of the two isolator models’ structural parameters on displacement range of low dynamic stiffness were contrastively analyzed.The dynamic model for longitudinal vibration of ship propulsion shafting based on QSZ isolator with its restoring force taken as one end’s boundary condition was established using the finite element (FE) method.The force transmissibility of the system was solved with the harmonic balance method.Combined with simulated ship working condition parameters, vibration isolation effects under excitation of blade frequency for ship propulsion shafting based on different isolator models were contrastively studied.Analysis results showed that the QZS isolator can realize longitudinal vibration reduction of ship propulsion shafting under excitation of blade frequency based on an equivalent linear system; choosing a suitable QZS isolator model and damping can avoid jump phenomenon occurring during main resonance and keep low frequency vibration isolation effect.

Key words

quasi-zero-stiffness (QZS) / longitudinal vibration of ship propulsion shafting / low-frequency vibration isolation / finite element analysis

Cite this article

Download Citations
ZHAO Han1, YANG Zhirong2, TA Na1, RAO Zhushi1. Longitudinal vibration reduction of ship propulsion shafting based on quasi-zero-stiffness isolator[J]. Journal of Vibration and Shock, 2020, 39(23): 90-95

References

[1] 赵 耀, 张赣波, 李良伟. 船舶推进轴系纵向振动及其控制技术研究进展[J]. 中国造船, 2011, 52(4): 259-269.
Zhao Y, Zhang G B, Li L W. Review of advances on longitudinal vibration of ship propulsion shafting and its control technology[J]. Shipbuilding of China, 2011, 52(4): 259-269.
[2] Poole R. The axial vibration of diesel engine crankshafts[J]. Proceedings of the Institution of Mechanical Engineers, 1941, 146(1): 167-182
[3] Rigby C P. Longitudinal vibration of marine propeller shafting[J]. Transactions of the Institute of Marine Engineers, 1948, 60: 67-78.
[4] Goodwin. The design of a resonance changer to overcome excessive axial vibration of propeller shafting[J]. Transactions of the Institute of Marine Engineers, 1960, 72: 37-62.
[5] Merz S, Kinns R, Kessissoglou N. Effect of a submarine shaft resonance changer in the presence of fluid forces[C]//Proc 7th European Conf Struct Dynamics. Southampton. 2008.
[6] 储 炜, 赵 耀, 张赣波, 等. 共振转换器的动力反共振隔振理论与应用[J]. 船舶力学, 2016, 20(1/2): 222-230.
Chu W, Zhao Y, Zhang G B, et al. Dynamic anti-resonance vibration isolation theory of resonance changer and application[J]. J. Ship Mech, 2016, 20(1-2): 222-230.
[7] 何江洋, 何 琳, 徐 伟, 等. 船舶推力轴承弹性支承的轴系纵振减振性能研究[J]. 船舶力学, 2017, 21(5): 613-620.
He J Y, He L, Xu W, et al. Longitudinal vibration isolation of marine shafting under different supporting forms of thrust bearing[C]//MECHANICS AND MECHANICAL ENGINEERING: Proceedings of the 2015 International Conference (MME2015). 2016: 562-571.
[8] 刘耀宗, 王 宁, 孟 浩, 等. 基于动力吸振器的潜艇推进轴系轴向减振研究[J]. 振动与冲击, 2009, 28(5): 184-187.
Yaozong L, Ning W, Hao M, et al. Design of dynamic vibration absorbers to reduce axial vibration of propelling shafts of submarines[J]. Journal of Vibration and Shock, 2009, 28(5): 184-187.
[9] 秦春云, 杨志荣, 饶柱石, 等. 船舶推进轴系纵向振动抑制研究[J]. 噪声与振动控制, 2013, 33(3): 147-152.
Qin C Y, Yang Z R, Rao Z S, et al. Study on suppression of the longitudinal vibration of ship's propulsion shafting system[J]. Noise and Vibration Control, 2013, 33(3): 147-152.
[10] 杨志荣, 秦春云, 饶柱石, 等. 船舶推进轴系纵振动力吸振器设计及参数影响规律研究[J]. 振动与冲击, 2012, 31(16): 48-51.
Yang Z R , Qin C Y , Rao Z S , et al. Design and analysis of a dynamic absorber for reducing axial vibration of ship shafting[J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2012, 31(16):48-51+61.
[11] 卢 坤, 刘 翎, 杨志荣, 等. 基于磁流变弹性体的推进轴系半主动式吸振器研究[J]. 振动与冲击, 2017, 36(15): 36-42.
Lu K , Liu L , Yang Z , et al. Semi-active dynamic absorber of a ship propulsion shafting based on MREs[J]. Journal of Vibration & Shock, 2017, 36(15):36-42.
[12] 路纯红, 白鸿柏. 新型超低频非线性被动隔振系统的设计[J]. 振動與衝擊, 2011, 30(1): 234-236.
Lu C H, Bai H B. A new type nonlinear ultra-low frequency passive vibration isolation system[J]. Zhendong yu Chongji(Journal of Vibration and Shock), 2011, 30(1): 234-236.
[13] Carrella A, Brennan M J, Kovacic I, et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2009, 322(4-5): 707-717.
[14] 孟令帅, 孙景工, 牛 福, 等. 新型准零刚度隔振系统的设计与研究[J]. 振动与冲击, 2014, 33(11): 195-199.
Meng L S, Sun J G, Niu F, et al. Design and analysis of a novel quasi-zero stiffness vibration isolation system[J]. Journal of Vibration and Shock, 2014, 33(11): 195-199.
[15] Meng L, Sun J, Wu W. Theoretical design and characteristics analysis of a quasi-zero stiffness isolator using a disk spring as negative stiffness element[J]. Shock and Vibration, 2015, 2015.
[16] Zhou N, Liu K. A tunable high-static–low-dynamic stiffness vibration isolator[J]. Journal of Sound and Vibration, 2010, 329(9): 1254-1273.
[17] 徐道临, 赵 智, 周加喜. 气动可调式准零刚度隔振器设计及特性分析[D]. , 2013.
Daolin X, Zhi Z, Jiaxi Z. Design and Analysis of an Adjustable Pneumatic Vibration Isolator with Quasi-Zero-Stiffness Characteristic[J]. Journal of Hunan University (Natural Sciences), 2013, 40(6): 47-52.
[18] Huang X C, Liu X T, Hua H X. Effects of stiffness and load imperfection on the isolation performance of a high-static-low-dynamic-stiffness non-linear isolator under base displacement excitation[J]. International Journal of Non-Linear Mechanics, 2014, 65: 32-43.
[19] Le T D, Ahn K K. Fuzzy sliding mode controller of a pneumatic active isolating system using negative stiffness structure[J]. Journal of Mechanical Science and Technology, 2012, 26(12): 3873-3884.
[20] Zhou J, Wang X, Xu D, et al. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms[J]. Journal of Sound and Vibration, 2015, 346: 53-69.
 
PDF(1089 KB)

473

Accesses

0

Citation

Detail

Sections
Recommended

/