Optimization design and analysis of a rapid erection device based on gas-squeezer type power source

REN Yuliang1,GAO Qinhe1,TIAN Hongning2

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (24) : 83-90.

PDF(1430 KB)
PDF(1430 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (24) : 83-90.

Optimization design and analysis of a rapid erection device based on gas-squeezer type power source

  • REN Yuliang1,GAO Qinhe1,TIAN Hongning2
Author information +
History +

Abstract

A rapid erection scheme of a vehicle borne missile launcher was proposed.The scheme was based on gas-squeezer in order to reduce both the erection time and the volume of the power source.An integrated model describing the whole progress of erection was established.Two erection schemes, with constant and variable burning area respectively, were compared and analyzed.A gas-liquid subsection control strategy based on optimization of grain burning area and cam profile was designed.In the first erection stage, the gas generator with variable burning area was applied, which helps to start up quickly and then keep a uniform speed.In the second erection stage, a speed control valve was used to control the process of deceleration, braking, and smooth parking.The spool of the speed control valve was controlled by a cam.Simulation results show that the erection progress can be achieved in 16 s, and the final parking process is smooth.Comparing with the traditional scheme based on hydraulic pump, the erection time is shortened significantly by inducing gas-squeezer.The scheme can provide an important design reference for the upgrading of the erection equipment.

Key words

missile / gas-squeezer / rapid erection / variable burning area / subsection control strategy

Cite this article

Download Citations
REN Yuliang1,GAO Qinhe1,TIAN Hongning2. Optimization design and analysis of a rapid erection device based on gas-squeezer type power source[J]. Journal of Vibration and Shock, 2020, 39(24): 83-90

References

[1] FENG J T,HUANG X X,GAO Q H,et al. Co-simulation and Experiment Research on a Novel Erection Mechanism[J]. Telkomnika:Telecommunication Computing Electronics and Control,2016,14(1):144-155.
[2] 李士禄. 挤压式液压能源简介[J]. 红外与激光工程,1983,(1):21-24.
LI Shilu. Introduce to squeeze hydraulic energy[J]. Infrared and Laser Engineering,1983,01:21-24.
[3] 成兆义,韦贯举,李俊岩,等. 挤压式伺服能源仿真分析[J]. 液压与气动,2017,(3):115-119.
CHENG Zhaoyi,WEI Guanjun,LI Junyan,et al. Simulation analysis for squeeze servo-system energy[J]. Chinese Hydraulics and Pneumatics,2017,(3):115-119.
[4] 李 悦,裴锦华. 无人机气液压弹射动力学数值仿真[J]. 机械工程学报,2011,(8):183-190.
LI Yue,PEI Jinhua. Dynamic numerical simulation of the pneumatic and hydraulic launching of UAV[J]. Chinese Journal of Mechanical Engineering,2011(8):183-190.
[5] 王树山,龚 平. 蓄压器及其气体发生器作用的数学模型[J].兵工学报,2003(2):209-211.
WANG Shushan,GONG Ping. Mathematical model for an accumulator and its gas generator[J]. Acta Armamentarii,2003(2):209-211.
[6] 谢英俊. 微重力落塔的高速液压上抛发射系统[D]. 杭州:浙江大学,2000.
XIE Yingjun. The high speed hydraulic upcasting system of the micro-gravity tower[D]. Hangzhou:Zhejiang University,2000.
[7] 李俊岩,邓 涛,陈安平,等. 基于AMESim的一种新型气液耦合能源系统仿真分析[J]. 液压与气动,2013(7):113-116.
LI Junyan,DENG Tao,CHEN Anping,et al. Simulation and analysis of a new gas-liquid coupling energy system by AMESim[J]. Chinese Hydraulics and Pneumatics,2013(7):113-116.
[8] 李俊岩,陈安平,邓 涛. 挤压式伺服系统参数设计及优化方法[J]. 导弹与航天运载技术,2016(1):59-62.
LI Junyan,DENG Tao,CHEN Anping. Parameter design and optimization method of blowdown servo system[J]. Missiles and Space Vehicles,2016(1):59-62.
[9] 张军辉,刘代峰,徐 兵,等. 基于蓄能器式辅助动力源的起竖系统研究[J]. 北京理工大学学报,2018,38:44-48.
ZHANG Junhui,LIU Daifeng,XU Bing,et al. Research on erection system based on accumulator type auxiliary power source[J]. Transactions of Beijing Institute of Technology,2018,38:44-48.
[10] 邵亚军,张 炜,高钦和,等. 燃气液压混合驱动的大型起竖系统内弹道设计[J]. 推进技术,2017,38(9):1956-1962.
SHAO Yajun,ZHANG Wei,GAO Qinhe,et al. Interior ballistic design for large erecting system based on hybrid drive of gas and hydraulics[J]. Journal of propulsion technology. 2017,38(9):1956-1962.
[11] 谭大成. 弹射内弹道学[M]. 北京:北京理工大学出版社,2015.
TAN Dacheng. Interior ballistics of catapults[M]. Beijing:Beijing Institute of Technology Press,2015.
[12] 谭惠民. 固体推进剂化学与技术[M]. 北京:北京理工大学,2015.
TAN Huimin. The chemistry and technology of solid rocket propellant[M]. Beijing: Beijing Institute of Technology Press,2015.
[13] 郭锦炎,王 浩,黄 明,等. 新型活塞式中心抛撒机构的内弹道仿真研究[J]. 兵工学报,2013,34(2):149-153.
GUO Jinyan,WANG Hao,HUANG Ming,et al. A simulation study of the interior ballistics of the new piston central dispersing machine[J]. Acta Armamentarii,2013,34(2):149-153.
[14] 贾文昂,赵 伟. 分离式气液混合弹射动力系统的研究[J]. 振动与冲击,2017,36(4):93-98.
JIA Wenang,ZHAO Wei. A study on the separate ejection system with gas-hydraulic hybrid[J]. Journal of Vibration and Shock,2017,36(4):93-98.
[15] 高钦和,马长林. 液压系统动态特性建模仿真技术与应用[M]. 北京:电子工业出版社,2013.
GAO Qinhe,MA Changlin. Modeling and simulation technology of hydraulic system dynamic characteristics and its application[M]. Beijing:Publishing House of Electronics Industry,2013.
[16] FENG J T,HUANG X X,GUAN W L,et al. Mathematical modeling and fuzzy adaptive PID control of erection mechanism. Indonesian Journal of Electrical Engineering, 2017,15(1):254-263.
[17] 任玉亮,高钦和,周 伟,等. 燃气挤压器式辅助动力源起竖装置建模及性能研究[J].北京理工大学学报,10.15918/j.tbit1001-0645.2019.220.
REN Yuliang,GAO Qinhe,ZHOU Wei,et al. Theoretical modeling and performance study on erection device with gas-squeezer type auxiliary power source[J]. Transactions of Beijing Institute of Technology,10.15918/j.tbit1001-0645.2019.220.
[18] 惠卫华,鲍福廷,刘 旸. 考虑低燃温燃气发生器试验的弹射器内弹道性能预示[J]. 固体火箭技术,2013,36(6):715-719.
HUI Weihua,BAO Futing,LIU Yang. Performance prediction of interior trajectory in launch considering experiment of gas generator in low temperature[J]. Journal of Solid Rocket Technology,2013,36(6):715-719.
[19] 闫鸿浩,张潇飞,赵碧波,等. 基于装药形状优化的中深孔爆破控制[J]. 科学技术与工程,2017,17(28):181-186.
YAN Honghao,ZHANG Xiaofei,ZHAO Bibo,et al. Middle-deep hole blasting control basing on the optimization of charge shape [J]. Science Technology and Engineering,2017,17(28):181-186.
[20] 段培勇,张圣卓,付曙光,等. 一种固体火箭起竖系统及起竖方法[P]. 中国专利 : 108194432A,2018-06-22.
PDF(1430 KB)

Accesses

Citation

Detail

Sections
Recommended

/