A method of model updating based on dynamic weighting coefficients and multi-objective evolution

WANG Le, LI Dong, YU Muchun, ZHANG Zijun, NIU Zhiling

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (4) : 284-290.

PDF(1335 KB)
PDF(1335 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (4) : 284-290.

A method of model updating based on dynamic weighting coefficients and multi-objective evolution

  • WANG Le, LI Dong,  YU Muchun,  ZHANG Zijun, NIU Zhiling
Author information +
History +

Abstract

The establishment of an accurate structural dynamic model is the basis for structural response analysis.Due to inaccurate model simplification and other factors, it will inevitably bring certain errors.In order to obtain a high-accuracy model, it needs to be modified in conjunction with experimental data.Modal test results usually contain frequency and mode shape information of different orders of different states of the test piece; thus, multiple objective functions need to be established.A multi-objective model updating method based on dynamic weighting coefficients was proposed, through the evolution of the solution group, in each generation of non-inferior solutions, the local optimal solution of each sub-objective function was selected, the gap between each local optimal solution and the expected value was calculated, and the weighting coefficient was dynamically adjusted according to the difference.In the course of evolution, the weighting coefficients were optimized to avoid the dimension disaster problem and realize rapid convergence of each sub-objective function.This method was used to update a missile’s dynamic model.The number of sub-objective functions reaches 16.Compared with the Pareto-optimal model updating method, the convergence of each sub-objective function was realized with few algebras, and the efficiency of group search is improved and a better updating effect is achieved.

Key words

model updating / multi-objective evolution / evolutionary algorithm / weighting coefficient

Cite this article

Download Citations
WANG Le, LI Dong, YU Muchun, ZHANG Zijun, NIU Zhiling. A method of model updating based on dynamic weighting coefficients and multi-objective evolution[J]. Journal of Vibration and Shock, 2020, 39(4): 284-290

References

[1] 严海, 马锐磊等. 基于模态参数的水下航行器楔环结构有限元模型修正[J]. 鱼雷技术, 2016, 24(2):87-93.
YAN Hai, MA Rui-lei, et al. Finite Element Model Correction for Wedged-Ring Connection Structure of Underwater Vehicle Based on Modal Parameters[J]. TORPEDO TECHNOLOGY, 2016, 24(2):87-93.,
[2] 宋正华, 姜东等. 含铰可展桁架结构非线性模型修正方法研究[J]. 振动与冲击,2018, 37(1):21-26.
SONG Zhenghua, JIANG Dong, et al. Nonlinear model updating method for deployable trusses with joints[J]. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(1):21-26.
[3] 秦仙蓉, 潘杰等. 塔式起重机结构有限元模型修正的响应面方法[J]. 振动与冲击,2018, 37(6): 244-250.
QIN Xianrong, PAN Jie, et al. Response surface method for the structural finite element model updating of tower cranes[J]. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(6): 244-250.
[4] 袁昭旭, 于开平. 高温环境下结构动力学模型修正方法研究[J]. 振动与冲击,2017, 36(15) :171-180.
YUAN Zhaoxu, YU Kaiping. Structural dynamic model updating under high temperature environment[J]. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(15) :171-180.
[5] 王毅,朱礼文等. 大型运载火箭动力学关键技术及其进展综述[J].导弹与航天运载技术,2000(1):29-37.
Wang Yi, Zhu Liwen, et al. Summary of Some Key Technologies on Dynamics of Large Launch Vehicle[J]. MISSILES AND SPACE VEHICLES, 2000(1):29-37.
[6] 崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2006:9-10.
Cui Xun-Xue. Multiobjective Evolutionary Algorithms and their Application[M]. Beijing: National Defense Industry Press,2006:9-10.
[7] 杨 帆,邓斌等. 基于Pareto排序遗传算法的改进型扩张室压力脉动衰减器多目标优化[J].振动与冲击,2018,37(12):1-8.
YANG Fan,DENG Bin,et al. Mult-optimization on improved expansion chamber hydraulic pulsation attenuators using a NSGA[J]. JOURNAL OF VIBRATION AND SHOCK, 2018,37(12):1-8.
[8] 贾洁,万一品等. 基于多目标遗传算法的振动熨平板压实系统参数优化 [J].振动与冲击,2017,36(12):230-235.
JIA Jie ,WAN Yi-pin, et al. Parameter optimization for compaction system of vibration screed of asphalt payer based on multi-objective genetic algorithm[J]. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(12):230-235.
[9] Zhenan He, Gary G. Yen. Many-Objective Evolutionary Algorithms Based on Coordinated Selection Strategy[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(2):220-233.
[10] Zhenhua Li, Qingfu Zhang. A Simple Yet Efficient Evolution Strategy for Large-Scale Black-Box Optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(5):637-646.
[11] Shouyong Jiang, Shengxiang Yang. A Strength Pareto Evolutionary Algorithm Based on Reference Direction for Multi-objective and Many-objective Optimization. IEEE Transactions on Evolutionary Computation[J], 2017, 21(3):329-346.
[12] 王乐,冷德新. 基于Pareto最优的Timoshenko梁模型修正方法[J].导弹与航天运载技术,2015(5):73-76.
Wang Le, Leng De-xin. A Method of Model Correction of Timoshenko Beam Based on Pareto Front[J]. MISSILES AND SPACE VEHICLES, 2015(5):73-76.
[13] 郝武伟,李俊吉. 粒子群算法对高维问题的优化研究[J]. 控制工程, 2018(05): 870-877.
HAO Wu-wei, LI Jun-ji. Study on the High Dimensional Problem Optimization by Particle Swarm Algorithm[J]. Control Engineering of China, 2018(05): 870-877.
[14] A. Cano, C. García-Martínez, S. Ventura. Extremely high-dimensional optimization with MapReduce: Scaling functions and algorithm[J]. Information Sciences, 2017, 415–416: 110-127.
[15] Hong Qian, Yang Yu. Solving High-Dimensional Multi-Objective Optimization Problems with Low Effective Dimensions[C]. The Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17):875:881.
[16] H. Xu, C. Caramanis, S. Mannor. Statistical Optimization in High Dimensions[J]. Operations Research, 2014, 64:958-979.
[17] Y. Ren, Y. Wu. An efficient algorithm for high-dimensional function optimization[J]. Soft Computing, 2013, 17(6):995-1004.
[18] 汤波,范瑞祥等. 悬挂工装对运载火箭模态试验影响分析[J]. 宇航学报,2017,38(12):1354-1360.
TANG Bo, FAN Rui-xiang, et al. Effects of Suspension Rope on Modal Experiment of Rockets[J]. Journal of Astronautics, 2017,38(12):1354-1360.
PDF(1335 KB)

Accesses

Citation

Detail

Sections
Recommended

/