Review of uncertain nonparametric dynamic modeling

FENG Wei1,2,LIU Baoguo1,2,DING Hao1,2,SHEN Huipeng1,2

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (5) : 1-9.

PDF(956 KB)
PDF(956 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (5) : 1-9.

Review of uncertain nonparametric dynamic modeling

  • FENG Wei1,2,LIU Baoguo1,2,DING Hao1,2,SHEN Huipeng1,2
Author information +
History +

Abstract

Various uncertain factors unavoidably exist in engineering applications, and adopting uncertain models can more accurately reflect dynamic systems’ characteristics.Dynamic modeling of parametric uncertainty has received full attention in last 30 years, while uncertain non-parametric dynamic modeling as a newer study field receives attention in recent years.This field has obtained a lot of study achievements up to now.It is necessary to comprehensively review the status of research and development at home and abroad in this field.Here, the research status and advances for approaches, theoretical basis, modeling process and application of uncertain non-parametric dynamic modeling were reviewed systematically.The existing problems now were summarized and development directions of future study in this field were pointed out.

Key words

uncertainty / nonparametric uncertainty / dynamic modeling / structural dynamics / rotor dynamics

Cite this article

Download Citations
FENG Wei1,2,LIU Baoguo1,2,DING Hao1,2,SHEN Huipeng1,2. Review of uncertain nonparametric dynamic modeling[J]. Journal of Vibration and Shock, 2020, 39(5): 1-9

References

[1] 王光远. 论不确定性结构力学的发展[J]. 力学进展,2002, 32(2):205-211.
   Wang Guangyuan. On the development of uncertain structural mechanics. Advances in Mechanics, 2002, 32(2):205-211.
[2] Schuëller G I, Pradlwarter H J. Uncertain linear systems in dynamics: Retrospective and recent developments by stochastic approaches[J].Engineering Structures, 2009, 31(11):2507-2517.
[3] Simoen E, Roeck G D, Lombaert G. Dealing with uncertainty in model updating for damage assessment: A review[J]. Mechanical Systems & Signal Processing, 2015, 56-57(56):123-149.
[4] Smith R C. Uncertainty Quantification: Theory, Implementation, and Applications[M]. Society for Industrial and Applied Mathematics, 2013..
[5] Sullivan T J. Introduction to uncertainty quantification[M]. Springer, 2015.
[6] Ghanem R, Higdon D, Owhadi H. Handbook of uncertainty quantification[M]. Springer, 2017.
[7] Soize C. Uncertainty Quantication: An Accelerated Course with Advanced Applications in Computational Engineering[M]. Springer, 2017.
[8] 袁亚辉, 黄洪钟, 张小玲. 一种新的多学科系统不确定性分析方法——协同不确定性分析法[J]. 机械工程学报, 2009, 45(7):174-182.
    Yuan Yahui, Huang Hongzhong, Zhang Xiaoling. New method for uncertainty analysis in multidisciplinary system—collaborative uncertainty analysis[J]. Journal of Mechanical Engineering, 2009, 45(7):174-182.
[9] 李杰, 陈建兵,彭勇波. 随机振动理论与应用新进展.第Ⅱ辑[M]. 同济大学出版社, 2018.
    Li jie, Chen Jianbing, Peng Yongbo. Advanced in theory and applications of random vibration Volume Ⅱ [M]. TongJi Universtity Press, 2018, (in Chinese).
[10] 姜东. 不确定性结构动力学模型修正方法研究[D]. 东南大学,2015.
    Jiang Dong. Updating of structural dynamics model with uncertainties [D]. Southeast Universtiy, 2015.
[11] 张洁洁. 基于区间分析方法的不确定参数转子系统动力学特性研究[D]. 哈尔滨工业大学, 2016.
   Zhang Jiejie. Invistigation on dynamic properties of rotor system with uncertain parameters based on interval analysis method[D]. Harbin Institude of Technology, 2016.
[12] 魏莎, 韩勤锴, 褚福磊. 考虑不确定参数的齿轮副非线性动态特性分析[J]. 振动与冲击, 2016, 35(10):44-48.
Wei Sha, Han Qinkai, Chu Fulei. Nonlinear dynamic analysis of gear-pair systems with uncertainties[J]. Journal of vibration and shock, 2016, 35(10):44-48.
[13] Kiureghian A D , Ditlevsen O . Aleatory or epistemic? Does it matter?[J]. Structural Safety, 2009, 31(2):105-112.
[14] Brian R, Worden, Keith, et al. Uncertainty in structural dynamics.[J]. Journal of sound & Vibration, 2005(3):423-429.
[15] Moens D, Vandepitte D. A survey of non-probabilistic uncertainty treatment in finite element analysis[J]. Computer Methods in Applied Mechanics & Engineering, 2005, 194(12-16):1527-1555.
[16] Daouk S, Louf F, Dorival O, et al. Uncertainties in structural dynamics: Overview and comparative analysis of methods[J]. Mechanics & Industry, 2015, 16(4).
[17] 林家浩,张亚辉. 随机振动的虚拟激励法[M]. 科学出版社,2004.
    Lin Jiahao, Zhang Yahui. Pseudo Excitation method in random vibration[M]. Science Press, 2004, (in Chinese).
[18] 李杰,陈建兵. 概率密度演化理论的若干研究进展[J]. 应用数学和力学, 2017, 38(1):32-43.
    Li jie, Chen Jianbin. Some New advances in the probability density evolution method[J]. Applied Mathematics and Mechanics, 2017, 38(1):32-43.
[19] 李杰,陈建兵. 随机动力系统中的概率密度演化方程及其研究进展[J]. 力学进展,2010, 40(2):170-188.
    Li jie, Chen Jianbin. Advances in the research on probability denstity evolution equations of stochastic dynamical syestems[J]. Advances in Mechanics, 2010, 40(2):170-188.
[20] Soize C. A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[J]. Probabilistic Engineering Mechanics, 2000, 15(3):277-294.
[21] 赵岩,张亚辉,林家浩. 非参数概率系统非平稳随机响应研究[J]. 应用力学学报,2009, 26(1):146-150.
    Zhao Yan, Zhang Yahui, Lin Jiahao. Nonstationary random response of nonparametric probabilistic systems[J]. Chinese Journal of Applied Mechanics, 2009, 26(1):146-150.
[22] 王跃华. 转子系统的不确定性非参数动力学建模及其特性研究[D]. 浙江大学,2016.
    Wang Yuehua. Nonparametric dynamics modeling and characteristics research of rotor system with random uncertainties[D]. Zhejiang University, 2016.
[23] Soize C. Stochastic modeling of uncertainties in computational structural dynamics—Recent theoretical advances[J]. Journal of Sound & Vibration, 2013, 332(10):2379-2395.
[24] Beck J L, Katafygiotis L S. Updating Models and Their Uncertainties. I: Bayesian Statistical Framework: Journal of Engineering Mechanics: (ASCE)[J]. Journal of Engineering Mechanics, 1998, 124(4):455-461.
[25] Adhikari S, Sarkar A. Uncertainty in structural dynamics: Experimental validation of a Wishart random matrix model[J]. Journal of Sound & Vibration, 2009, 323(3):802-825.
[26] Soize C. Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions[J]. International Journal for Numerical Methods in Engineering, 2010, 81(8):939-970.
[27] Maître O P L, Knio O M. Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics[M]. Springer, 2010.
[28] Arnst M, Ghanem R. Probabilistic equivalence and stochastic model reduction in multiscale analysis[J]. Computer Methods in Applied Mechanics & Engineering, 2008, 197(43–44):3584-3592.
[29] Das S, Ghanem R, Spall J C. Asymptotic Sampling Distribution for Polynomial Chaos Representation from Data: A Maximum Entropy and Fisher Information Approach[M]. Society for Industrial and Applied Mathematics, 2008.
[30] Guilleminot J, Soize C. A stochastic model for elasticity tensors with uncertain material symmetries[J]. International Journal of Solids & Structures, 2010, 47(22–23):3121-3130.
[31] Soize C. Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size[J]. Probabilistic Engineering Mechanics, 2008, 23(2):307-323.
[32] Jaynes E T. Information Theory and Statistical Mechanics[J]. Physical Review, 1957, 106(4):620-630.
[33] Soize C. Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices[J]. International Journal for Numerical Methods in Engineering, 2008, 76(10): 1583-1611.
[34] Wishart J. The generalised product moment distribution in samples from a normal multivariate population[J]. Biometrika, 1928: 32-52.
[35] 曾杏元. 有关随机矩阵领域最新研究动态与进展的综述报告[J]. 数学理论与应用,2011, 31(3): 7-19.
    Zeng Xingyuan. A survey on the latest dynamic and progress of random matrix field[J]. Mathematical Theory and Applications, 2011, 31(3): 7-19.
[36] Soize C. Maximum entropy approach for modeling random uncertainties in transient elastodynamics[J]. The Journal of the Acoustical Society of America, 2001, 109(5): 1979-1996.
[37] Soize C. Random matrix theory and non-parametric model of random uncertainties in vibration analysis[J]. Journal of sound and vibration, 2003, 263(4): 893-916.
[38] Soize C. Random matrix theory for modeling uncertainties in computational mechanics[J]. Computer Methods in Applied Mechanics & Engineering, 2005, 194(12–16):1333-1366.
[39] Legault J, Langley R S, Woodhouse J. Physical consequences of a nonparametric uncertainty model in structural dynamics[J].Journal of sound and vibration, 2012, 331(25): 5469-5487.
[40] Bowman A W, Azzalini A. Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations[M]. OUP Oxford, 1997.
[41] Terrell G R, Scott D W. Variable kernel density estimation[J]. The Annals of Statistics, 1992: 1236-1265.
[42] Walter E, Pronzato L. Identification of parametric models from experimental data[M]. Springer Verlag, 1997.
[43] Tian G L, Tan M T, Ng K W. Bayesian missing data problems: EM, data augmentation and noniterative computation[M]. Chapman and Hall/CRC, 2009.
[44] Soize C. A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(45-46): 3083-3099.
[45] Rubinstein R Y, Kroese D P. Simulation and the Monte Carlo method[M]. John Wiley & Sons, 2016.
[46] Papadrakakis M, Papadopoulos V. Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 134(3-4): 325-340.
[47] Papadrakakis M, Kotsopulos A. Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 168(1-4): 305-320.
[48] Pradlwarter H J, Schueller G I. On advanced Monte Carlo simulation procedures in stochastic structural dynamics[J]. International Journal of Non-Linear Mechanics, 1997, 32(4): 735-744.
[49] Schueller G I. Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis-recent advances[J]. Structural Engineering and Mechanics, 2009, 32(1): 1-20.
[50] Soize C. A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics[J]. Journal of Sound & Vibration, 2005, 288(3):623-652.
[51] Chen C, Duhamel D, Soize C. Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels[J]. Journal of Sound & Vibration, 2006, 294(1):64-81.
[52] Arnst M, Clouteau D, Chebli H, et al. A non-parametric probabilistic model for ground-borne vibrations in buildings[J]. Probabilistic Engineering Mechanics, 2006, 21(1): 18-34.
[53] Ritto,T G, Soize C, Sampaio R. Non-linear dynamics of a drill-string with uncertain model of the bit–rock interaction [J].International Journal of Nonlinear Mechanics, 2009, 44(8):865-876.
[54] Ritto T G, Soize C, Sampaio R. Probabilistic model identification of the bit–rock interaction model uncertainties in nonlinear dynamics of a drill-string [J]. Mechanics Research Communications, 2010, 37(6):584-589.
[55] 赵岩,张亚辉,林家浩. 不确定动力系统平稳随机响应分析[J]. 计算力学学报,2009, 26(2):204-208.
Zhao Yan, Zhang Yahui, Lin Jiahao. Stationary random response of dynamical systems with random uncertainties[J]. Chinese Journal of Computational Mechanics, 2009, 26(2):204-208.
[56] Celarec D, Dolšek M. The impact of modeling uncertainties on the seismic performance assessment of reinforced concrete frame buildings [J]. Engineering Structures, 2013, 52:340-354.
[57] Batou A, Soize C, Audebert S. Model identification in computational stochastic dynamics using experimental modal data [J]. Mechanical Systems and Signal Processing, 2015, 50-51:307-322.
[58] Capillon R, Desceliers C, Soize C. Model uncertainties in computational viscoelastic linear structural dynamics [J]. Procedia Engineering, 2017, 199: 1210-1215.
[59] Song P C, Mignolet M P. Reduced order model-based uncertainty modeling of structures with localized response [J]. Probabilistic Engineering Mechanics, 2018, 51: 42-55.
[60] Song P, Mignolet M P. Maximum Entropy-Based Uncertainty Modeling at the Finite Element Level[C]// Aiaa Non-Deterministic Approaches Conference. 2018.
[61] 游进, 孟光, 李鸿光. 声振系统中高频能量流分析法研究进展[J]. 振动与冲击, 2012, 31(11):62-69.
You Jin, Meng Guang, Li Hongguang.  Review of mid-to-high frequency energy flow analysis method for vibro-acoustic systems[J]. Journal of vibration and shock, 2012, 31(11):62-69.
[62] 焦仁强. 声腔结构中频声振耦合建模研究及不确定性影响分析[D]. 东南大学,2017.
 Jiao Renqiang. Study on vibro-acoustic modeling of enclosure in mid-frequency and effect analysis of uncertainties[D]. Southeast University, 2017.
[63] Durand J F, Soize C, Gagliardini L. Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation[J]. The Journal
of the Acoustical Society of America, 2008, 124(3):1513-1525.
[64] Fernandez C , Soize C , Gagliardini L . Sound-Insulation Layer Modelling in Car Computational Vibroacoustics in the Medium-Frequency Range[J]. Acta Acustica united with Acustica, 2010, 96(3):437-444.
[65] Jiao R , Zhang J , Xue F , et al. Dynamic analysis and experimental study of vibro-acoustic system with uncertainties at middle frequencies[J]. 东南大学学报(英文版), 2017, 33(2):166-170.
[66] 方永锋, 陈建军, 马洪波. 多种随机载荷下的结构动态可靠性计算[J]. 振动与冲击, 2013, 32(1):118-121.
Fang Yongfeng, Chen Jianjun, Ma Hongbo. Structural dynamic reliability calculation under three types of stochastic loads[J]. Journal of vibration and shock, 2013, 32(1):118-121.
[67] 吕大刚, 宋鹏彦, 王光远. 考虑模型不确定性的结构可靠度分析方法[J]. 哈尔滨工业大学学报, 2011, 43(10):1-5.
Lv Dagang, Song Pengyan, Wang Guangyuan. Reliability analysis methods of structures considering modeling uncertainty[J]. Journal of Harbin Institute of Technology, 2011, 43(10):1-5.
[68] Capiez Lernout E, Pellissitti M , Pradlwarter H , et al. Data and model uncertainties in complex aerospace engineering systems[J]. Journal of Sound & Vibration, 2006, 295(3):923-938.
[69] Desceliers C, Soize C, Cambier S. Non-parametric-parametric model for random uncertainties in non-linear structural dynamics: application to earthquake engineering[J]. Earthquake Engineering & Structural Dynamics, 2004, 33(3):315-327.
[70] Fontanela F, Silva O M, Lenzi A, Ritto T G. Development of a stochastic dynamical model for hermetic compressor's components with experimental investigation [J]. Mechanical Systems and Signal Processing, 2016, 76-77: 712-728.
[71] Mbaye M, Soize C, Ousty JP, et al. Robust analysis of design in vibration of turbomachines, ASME Journal of Turbomachinery, 2013, 35(2),021008-1-8.
[72] Chang C Y, Chang M Y, Huang J H. Vibration analysis of rotating composite shafts containing randomly oriented reinforcements [J]. Composite Structures, 2004 ,63: 21-32.
[73] Dimentberg M F,Ryzhik B,Sperling L.Random vibrations of a damped rotating shaft [J].Journal of Sound and Vibration, 2005, 279: 275-284.
[74] 苏长青, 张义民, 吕春梅,等. 转子系统振动的频率可靠性灵敏度分析[J]. 振动与冲击, 2009, 28(1):56-59.
    Su Changqing, Zhang Yimin, Lv Chunmei, et al. Natural frequency reliability sensitivity analysis of a rotor system[J]. Journal of vibration and shock, 2009, 28(1):56-59.
[75] 姚红良,李祥松,王得刚,等.模糊随机有限元在转子动力学分析中的应用[J].应用力学学报,2010, 27(2): 384-387.
    Yao Hongliang, Li Xiangsong, Wang Degang, et al. Application of fuzzy random finit element method to rotor dynamics[J]. Chinese Journal of Applied Mechanics, 2010, 27(2): 384-387.
[76] Didier J, Faverjon B, Sinou J. Analysing the dynamic response of a rotor system under uncertain parameters by polynomial chaos [J]. Journal of Vibration and Control, 2012,18(5),: 712-732.
[77] Liu B G. Eigenvalue problems of rotor system with uncertain parameters[J]. Journal of Mechanical Science and Technology, 2012, 26(1): 1-10.
[78] 刘保国,梁国珍,苏林林,等.基于摄动法的随机参数转子系统动力响应的概率密度分析[J].机械强度,2013, 35(04) :400-405.
Liu Baoguo, Liang Guozhen, Su Linlin, et al. Probability density analysis of the dynamic response of random parametrical rotor system based on the perturbation method[J]. Jouranl of Mechanical Strength, 2013, 35(04) :400-405.
[79] 郝勇, 陈萌, 洪杰,等. 基于泰勒展开法的转子系统动力特性区间分析方法[J]. 航空动力学报, 2014, 29(3):571-577.
    Interval analysis method of rotordynamics based on Taylor expansion method[J]. Journal of Aerospace Power, 2014, 29(3):571-577.
[80] 方勃, 张洁洁, 高宇飞. 不确定转子系统动力特性的区间分析方法[J]. 沈阳工业大学学报, 2017, 39(1):83-87.
    Fang Bo, Zhang Jiejie, Gao Yufei. Interval analysis method for dynamical properties of rotor system with uncertain parameters[J]. Journal of Shenyang University of Technology, 2017, 39(1):83-87.
[81] 马辉,李焕军,刘杨,等. 转子系统耦合故障研究进展与展望[J]. 振动与冲击, 2012, 31(17):1-11.
    Ma Hui, Li Huanjun, Liu Yang, et al. Review and prospect for research of coupling faults in rotor systems[J]. Journal of vibration and shock, 2012,31(17):1-11.
[82] 胡金海, 余治国, 翟旭升, 等. 基于改进D-S证据理论的航空发动机转子故障决策融合诊断研究[J]. 航空学报, 2014, 35(2):436-443.
Hu Jinhai, Yu Zhiguo, Zhai Xusheng, et al. Research of decision fusion diagnosis of aero-engine rotor fault based on improved D-S theory[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):436-443.
[83] 毛文贵, 李建华, 刘桂萍,等. 考虑油膜不确定性的滑动轴承-转子系统不平衡量识别[J]. 振动与冲击, 2016, 35(18):214-221.
Mao Wengui, Li Jianhua, Liu Guiping, et al. Unbalance parameters identification for a sliding bearing-rotor system considering the uncertainty of parameters[J]. Journal of vibration and shock, 2012,31(17):1-11.
[84] 傅超,任兴民,杨永锋,等. 考虑参数不确定性的转子系统瞬态动平衡研究[J]. 动力学与控制学报,2017, 15(5):453-458.
    Fu Chao, Ren Xingmin, Yang Yongfeng, et al. Transient dynamic balancing of rotor system with parameter uncertainties[J]. Jouranl of Danamics and Control, 2017, 15(5):453-458.
[85] 边涛, 谢寿生, 任立通, 等. 基于贝叶斯理论的拉杆转子模态特性确认[J]. 振动与冲击, 2017, 36(23):92-98.
Bian Tao, Xie Shousheng, Ren Litong, et al. Modal characteristics confirmation of a rod- fastening rotor based on Bayesian theory[J]. Journal of vibration and shock, 2017, 36(23):92-98.
[86] Murthy R, Mignolet M P, El-Shafei A. Nonparametric stochastic modeling of uncertainty in rotordynamics—Part I: Formulation [J]. ASME Journal of Engineering for Gas Turbines ISROMAC12, Hunolulu, Hawaii USA, 2008: 152-159.
[87] Murthy R, Mignolet M P, El-Shafei A. Nonparametric stochastic modeling of uncertainty in rotordynamics—Part II: Applications [J]. ASME Journal of Engineering for Gas Turbines and Power, 2010, 132(9): 092502.1-092502.11.
[88] Sarrouy E, Dessombz O, Sinou J J. Stochastic analysis of the eigenvalue problem for mechanical systems using polynomial chaos expansion—application to a finite element rotor[J]. Journal of Vibration and Acoustics, 2012, 134(5): 051009.
[89] Murthy R, Tomei J C, Wang X Q, et al. Nonparametric stochastic modeling of structural uncertainty in rotordynamics: Unbalance and balancing aspects[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(6): 062506.  
[90] Gan C B, Wang Y H, Yang S X, etc. Nonparametric modeling and vibration analysis of uncertain Jeffcott rotor with disc offset [J]. International Journal of Mechanical Sciences, 2014, 78: 126-134.
[91] Gan C B, Wang Y H, Yang S X. Nonparametric modeling on random uncertainty and reliability analysis of a dual-span rotor[J]. 浙江大学学报a辑(应用物理与工程)(英文版), 2018.
[92] Butlin T. Response bounds for complex systems with a localised and uncertain nonlinearity[J]. Journal of Sound and Vibration, 2016, 384: 227-252.
[93] Mignolet M P, Soize C. Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45-48): 3951-3963.
[94] Cunha A, Soize C, Sampaio R. Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings[J]. Computational Mechanics, 2015, 56(5): 849-878.
[95] Soize C, Farhat C. Nonparametric probabilistic approach of model uncertainties introduced by a projection-based nonlinear reduced-order model[C]//ECCOMAS 2016, 7th European Congress on Computational Methods in Applied Sciences and Engineering. 2016, 1: 1-26.
PDF(956 KB)

Accesses

Citation

Detail

Sections
Recommended

/