Measurement and calculation for sound insulation performance of  automobile body sheet metal reinforcing rib

YUAN Zhongxiang1, Subhash Rakheja1, XIAO Yi1, XIE Xinxing2, SHANGGUAN Wenbin1, ZHU Gang3

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (5) : 227-234.

PDF(2302 KB)
PDF(2302 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (5) : 227-234.

Measurement and calculation for sound insulation performance of  automobile body sheet metal reinforcing rib

  • YUAN Zhongxiang1, Subhash Rakheja1, XIAO Yi1, XIE Xinxing2, SHANGGUAN Wenbin1, ZHU Gang3
Author information +
History +

Abstract

Measurement and calculation for sound insulation performance of automobile body sheet metal reinforcing rib were studied here.The calculation model for sound transmission loss (STL) of a thin plate was established with SEA and FE-SEA hybrid modeling methods.Its calculation results were compared with test ones for verification.Automobile body sheet metal reinforcing rib’s height, width, hole and arrangement density were taken as variables to design and fabricate different schemes of automobile body sheet metal reinforcing rib.These schemes’ STLs were measured in a reverberation-complete elimination room.The test results showed that with increase in width of sheet metal reinforcing rib, its STL increases within full frequency range; if a hole is opened on a rib, its STL drops; with increase in arrangement density of ribs, peaks and valleys of sound insulation curve increase.Based on contrastive results of tests and calculation, factors affecting STL calculation of automobile body sheet metal reinforcing rib were analyzed.

Key words

automobile body sheet metal reinforcing rib / sound transmission loss / FE-SEA hybrid modeling / sound insulation measurement / sound insulation calculation

Cite this article

Download Citations
YUAN Zhongxiang1, Subhash Rakheja1, XIAO Yi1, XIE Xinxing2, SHANGGUAN Wenbin1, ZHU Gang3. Measurement and calculation for sound insulation performance of  automobile body sheet metal reinforcing rib[J]. Journal of Vibration and Shock, 2020, 39(5): 227-234

References

[1] Wang Y S, Lee C M, Kim D G, et al. Sound-quality prediction for nonstationary vehicle interior noise based on wavelet pre-processing neural network model[J]. Journal of Sound and Vibration, 2007, 299: 933–947.
[2] Shin S H, Cheong C L. Experimental characterization of instrument panel buzz, squeak and rattle(BSR) in a vehicle[J]. Applied Acoustics, 2010, 71: 1162–1168.
[3] Cotoni V, Gardner B, Cordioli J A, et al. Advanced modeling of aircraft interior noise using the hybrid FE-SEA method[C]. SAE Technical paper 2008-36-0575.
[4] Langley R S, Cordioli J A. Hybrid deterministic-statistical analysis of vibro-acoustic systems with domain couplings on statistical components[J]. Journal of Sound and Vibration, 2009, 321: 893–912.
[5] Shorter P J, Gardner B K, Bremner P G. A hybrid method for full spectrum noise and vibration prediction[J]. Journal of Computational Acoustics, 2003, 11(2): 323–338.
[6] Musser C T, Rodrigues A B. Mid-frequency prediction accuracy improvement for fully-trimmed vehicle using hybrid SEA-FEA technique[C]. SAE Technical paper 2008-36-0564.
[7] Manning J E. Hybrid SEA for mid-frequencies[C]. SAE Technical paper 2007-01-2305.
[8] Charpentier A, Sreedhar P, Fukui K. Using the hybrid FE-SEA method to predict structure-borne noise transmission in a trimmed automotive vehicle[C]. SAE Technical paper 2007-01-2181.
[9] Jayachandran V, Bonilha M W. A hybrid SEA /modal technique for modeling structural-acoustic interior noise in rotorcraft[J]. Journal of Acoustical Society of America, 2003, 113(3): 1448.
[10] 丁政印,郝志勇,张智博. FE-SEA法对镁合金前围板声传递路径识别与声学包装设计[J]. 振动与冲击,2014,33(10): 87-91.
DING Zheng-yin, HAO Zhi-yong, ZHANG Zhi-bo. Sound transmission path identification of a magnesium-alloy dash board with FE-SEA method and its sound package design[J]. Journal of vibration and shock, 2014, 33(10): 87-91.
[11] 贺岩松,张辉,夏小均,等. 基于FE-SEA混合法的车身板件降噪分析[J]. 振动与冲击,2016,35(23): 234-240.
HE Yan-song, ZHANG Hui, XIA Xiao-jun, et al. Noise reduction analysis for car body panels based on hybrid FE-SEA method[J]. Journal of Vibration and Shock, 2016, 33(23): 234-240.
[12] 温华兵,彭子龙,刘林波. 基于FE-SEA混合法的空心阻振质量阻振性能研究[J]. 振动与冲击,2015,34(5):174-185.
BEN Hua-bing, PENG Zi-Long, LIU Lin-bo. Vibration-isolating performance of hollow-square-steel blocking mass based on hybrid FE-SEA method[J]. Journal of Vibration and Shock, 2015, 34(5): 174-185.
[13] 吴飞,李光耀,成艾国,等. 基于混合ES-FE-SEA方法的中频声固耦合分析[J]. 机械工程学报,2015,51(15):67-74.
WU Fei, LI Guang-yao, CHENG Ai-guo, et al. Hybrid ES-FE-SEA approach for the analysis of vibro-acoustic problems in Mid-frequency range[J]. Journal of Vibration Engineering, 2015, 51(15): 67-74.
[14] 滕晓艳,江旭东,邹广平,等. 简谐激励下板壳结构加强筋仿生布局降噪方法[J]. 振动与冲击,2016,35(6):1-6.
TENG Xiao-yan, JIANG Xu-dong, ZOU Guang-ping, et al. Bionic approach for stiffener layout on plate and shell structure under harmonic excitation for noise reduction[J]. Journal of Vibration and Shock, 2016, 35(6): 1-6.
[15] 张永杰,陈璐,韦冰峰,等. 梁板组合结构的中频振动试验与计算分析[J]. 振动与冲击, 2016,35(13):194-200.
ZHANG Yong-jie, CHEN Lu, WEI Bing-feng, WANG Zhe, et al. Tests and simulation for vibration in mid-frequency domain of a beam-plate built-up structure[J].Journal of Vibration and Shock, 2016, 35(13): 194-200.
[16] 任惠娟,盛美萍. 加筋矩形薄板的平均声辐射效率[J]. 振动与冲击,2016,35(20):167-17.
REN Hui-juan, SHENG Mei-ping. The average radiation efficiency of a rectangular stiffened thin plate[J]. Journal of Vibration and Shock, 2016, 35(20): 167-171.
[17] 唐广鑫,白国锋,刘克. 加强板隔声量的研究[J]. 声学技术,2007,26(5):99-100.
TANG Guang-xin, BAIGuo-feng, LIU Ke. Investigation of sound insulation for ribbed panels[J].Technical Acoustics,2007,26(5):99-100.
[18] 杜功焕等. 声学基础[M]. 南京:南京大学出版社,2012.
[19] 马大猷. 噪声与振动控制工程手册[M]. 北京:机械工业出版社,2002.
[20] GMW 14173 Sound Transmission Loss (STL) Master Test Procedure[S]. 2005.
[21] VAone User Guide[M]VAone, 2015.
[22] 庞剑. 汽车车身噪声与振动控制[M]. 北京:机械工业出版社,2015.
PDF(2302 KB)

Accesses

Citation

Detail

Sections
Recommended

/