Rate-dependent modeling of a piezoelectric two-dimensional micro positioning stage

HU Junfeng,HE Jiankang,YANG Mingli

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (6) : 104-110.

PDF(1624 KB)
PDF(1624 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (6) : 104-110.

Rate-dependent modeling of a piezoelectric two-dimensional micro positioning stage

  • HU Junfeng,HE Jiankang,YANG Mingli
Author information +
History +

Abstract

In order to describe the rate-dependent hysteresis nonlinearity of piezoelectric multi-dimensional micro-positioning stages, a modeling method was proposed based on the Hammerstein model.The dynamic model of a two-dimensional micro-positioning stage was composed of a static hysteretic nonlinear part and a linear dynamic system in series.The static nonlinear part was described by an modified Prandtl-Ishlinskii model (MPI), and the linear dynamic system was described by the autoregressive model with exogenous input (ARX).The model parameter identification method was also given out.In order to verify the validity of the Hammerstein model, an experimental platform was set up for experimental verification.The experimental results show that the relative errors between the predicted displacements derived by the Hammerstein model and measured displacements is 1 %—5 % by applying different frequency voltage signals to the stage.The predicted displacements are close to the measured displacements, which shows that the presented model can accurately describe the rate-dependent hysteresis characteristics of the micro-positioning stage.

Key words

piezoelectric actuator / hammerstein model / micro-positioning stage / rate-dependent hysteresis

Cite this article

Download Citations
HU Junfeng,HE Jiankang,YANG Mingli. Rate-dependent modeling of a piezoelectric two-dimensional micro positioning stage[J]. Journal of Vibration and Shock, 2020, 39(6): 104-110

References

[1] Yue Yi, Gao Feng, Zhao Xianchao, et al. Relationship among input-force, payload, stiffness and displacement of a 3-DOF perpendicular parallel micro-manipulator [J]. Mechanism and Machine Theory, 2010, 45(5): 756-771.
[2] Xiao Shunli, Li Yangmin. Modeling and high dynamic compensating the Rate-dependent hysteresis of Piezoelectric actuators via a novel modified inverse Preisach model [J]. IEEE Transactions on Control Systems Technology, 2013, 21(5): 1549-1557.
[3] 胡俊峰, 杨展宏, 徐贵阳. 基于响应面法的微操作平台可靠性稳健设计 [J]. 振动与冲击, 2017, 36(15): 245-252.
HU Jun-feng, YANG Zhan-hong, XU Guiyang. Reliability-based robust design of a micro-manipulation Stage with response surface method [J]. Journal of Vibration and Shock, 2017, 36(15): 245-252.
[4] 胡俊峰, 杨展宏. 尺蠖式直线微驱动器的设计 [J]. 光学 精密工程, 2017, 26(1): 122-131.
HU Jun-feng, YANG Zhan-hong. A novel inchworm linear micro actuator [J]. Optics and Precision Engineering, 2017, 26(1): 122-131.
[5] Zakerzadeh M R, Firouzi M, Sayyaadi H, et al. Hysteresis nonlinearity identification using new Preisach model based artificial neural network approach [J]. Journal of Applied Mathematics, 2011, 2011(22): 1-21.
[6] Habineza D , Rakotondrabe M , Gorrec Y L . Bouc–Wen Modeling and Feedforward Control of Multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner [J]. IEEE Transactions on Control Systems Technology, 2015, 23(5): 1797-1806.
[7] Jiaqiang, E, Qian, Cheng, Zhu, Hao, et al. Parameter-identification investigations on the hysteretic Preisach model improved by the fuzzy least square support vector machine based on adaptive variable chaos immune algorithm [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2017, 36(3): 227-242.
[8] Lin C J, Lin P T. Tracking Control of a Biaxial Piezo-actuated Positioning Stage Using Generalized Duhem Model [J]. Computers & Mathematics with Applications, 2012, 64(5): 766-787.
[9] 崔玉国, 朱耀祥, 马剑强 等. 压电微动平台的定位控制[J]. 振动与冲击, 2015, 34(17): 63-68.
CUI Yu-guo, ZHU Yao-xiang, MA Jian-qiang, et al. Position Control for a Piezoelectric Micro-Positioning Stage [J]. Journal of Vibration and Shock, 2015, 34(17): 63-68.
[10] 武毅男,方勇纯. 基于Preisach模型的深度学习网络迟滞建模 [J]. 控制理论与应用, 2018, 35(6): 723-731.
WU Yi-nan, FANG Yong-chun. Hysteresis Modeling with Deep Leraning Network Based on Preisach Model[J]. Control Theory and Applications, 2018, 35(6):723-731.
[11] 贾立, 李训龙. Hammerstein模型辨识的回顾及展望 [J]. 控制理论与应用, 2014, 31(1): 1-10.
Jia Li, Li Xunlong. Identification of Hammerstein model: review and prospect [J]. Control Theory and Applications, 2014, 31(1): 1-10.
[12] Wang Zhenyua, Zhang Zhen, Mao Jianqin, et al. A Hammerstein-based model for rate-dependent hysteresis in piezoelectric actuator [J]. 2012, 23(1): 1391-1396.
[13] 杨斌堂, 赵寅, 彭志科 等. 基于Prandtl-Ishlinskii模型的超磁致伸缩驱动器实时磁滞补偿控制 [J]. 光学 精密工程, 2013, 21(1): 124-130.
YANG Bintang, ZHAO Yin, PENG Zhike, et al. Real-time compensation control of Hysteresis based on Prandtl-Ishlinskii operator for GMA [J]. Optics and Precision Engineering, 2013, 21(1): 124-130.
[14] Kuhnen K. Modeling, Identification and compensation of complex Hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach [J]. European Journal of Control, 2003, 9(4): 407-418.
[15] 杨一博, 尹文生, 汪劲松 等. 粗精动运动平台的系统辨识激励信号优化设计 [J]. 机械工程学报, 2010, 46(9): 165-170.
Yang Yibo, Yin Wenshen,Wang Jinson,et al. Optimal Excitation Signal Design for Identification of a Coarse-fine Motion PlatfoFm [J]. Chinese Journal of Mechanical Engineering, 2010, 46(9): 165-170.
PDF(1624 KB)

Accesses

Citation

Detail

Sections
Recommended

/