Analysis and control for chaotic oscillation synchronization interruption of permanent magnet synchronous motor systems and networks

ZHONG Guoxiang1, WEI Duqu1, ZHANG Bo2

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (7) : 8-13.

PDF(1125 KB)
PDF(1125 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (7) : 8-13.

Analysis and control for chaotic oscillation synchronization interruption of permanent magnet synchronous motor systems and networks

  • ZHONG Guoxiang1, WEI Duqu1, ZHANG Bo2
Author information +
History +

Abstract

Previous studies showed that chaotic oscillation behavior occurs in a single motor under some certain parameters and operating conditions. On the other hand, in the modern industrial production process, multiple motors are often required to operate in coordination and synchronization. At present, there are many studies on chaotic oscillation synchronous analysis and control of motor systems and networks at home and abroad, but investigations on synchronous interruption analysis and control of motor systems and networks due to parametric disturbance are less. Here, on the basis of conventional diffusion coupling mode, vibration characteristics of permanent magnet synchronous motor (PMSM) systems and networks after parametric perturbation were studied by introducing a unidirectional cross coupling mode. It was proved that unidirectional cross coupling has synchronous robustness to parametric perturbation in PMSM systems and networks. PMSM systems with 3-node, 4-node and multi-node networks were adopted to verify cross coupling having important actions of global stability and synchronization for multi-node motors and networks. The study results showed that establishing a suitable unidirectional cross coupling mode can effectively control synchronous interruption caused by parametric disturbance in motor networks, and recover their synchronous operating.

Key words

permanent magnet synchronous motor (PMSM) / synchronous interruption / cross coupling / chaotic synchronization

Cite this article

Download Citations
ZHONG Guoxiang1, WEI Duqu1, ZHANG Bo2. Analysis and control for chaotic oscillation synchronization interruption of permanent magnet synchronous motor systems and networks[J]. Journal of Vibration and Shock, 2020, 39(7): 8-13

References

[1] 马伟明,王东,程思为,等. 高性能电机系统的共性基础科学问题与技术发展前沿[J].中国电机工程学报,2016,36(08):2025-2035.
MA Weiming, WANG Dong, CHENG Siwei, et al. Common Basic Scientific Problems and Development of Leading-edge Technology of High Performance Motor System[J]. Proceedings of the CSEE2016, 36(08): 2025-2035.
[2] 邵俊波,王辉,黄守道,等. 一种表贴式永磁同步电机无位置传感器低速控制策略[J].中国电机工程学报,2018,38(05):1534-1541.
SHAO Junbo, WANG Hui, HUANG Shoudao, et al. A Position Sensorless Control Strategy of Surface-mounted Permanent-magnet Synchronous Motors for Low-speed Operation[J]. Proceedings of the CSEE2018, 38(05): 1534-1541.
[3] 李晓华,黄苏融,张琪. 电动汽车用永磁同步电机定子结构固有频率分析[J].中国电机工程学报,2017,37(08):2383-2391.
LI Xiaohua, HUANG Surong, ZHANG Qi. Analysis of Natural Frequencies of Stator Structure of Permanent Magnet Synchronous Motors for Electric Vehicles[J]. Proceedings of the CSEE2017,37(08):2383-2391.
[4] 于蓬,王珮琪,章桐,等. 电机控制策略对电动车动力总成电磁振动的影响[J].振动与冲击,2017,36(19):119-124+163.
YU Peng, WANG Peiqi, ZHANG Tong, et al. Effects of motor control strategies on the electromagnetic vibration of electric vehicle power trains[J]. Journal of Vibration and Shock, 2017, 36(19):119-124+163.
[5] FENG H C, SHANG B Y, GAO L Z. A closed-loop I/f vector control for permanent magnet synchronous motor[C]//Modelling, Identification and Control (ICMIC), 2017 9th International Conference on. IEEE, 2017: 965-969.
[6] 马伟明. 舰船综合电力系统中的机电能量转换技术[J]. 电气工程学报, 2015,10(04):3-10.
MA Weiming. Electromechanical power conversion technologies in vessel integrated power system[J]. Journal of Electrical Engineering. 2015,10(04):3-10.
[7] 刘旭东,李珂,张奇,等. 基于非线性扰动观测器的永磁同步电机单环预测控制[J].中国电机工程学报,2018,38(07):2153-2162+2230.
LIU Xudong, LI Ke, ZHANG Qi, et al. Single-loop Predictive Control of PMSM Based on Nonlinear Disturbance Observers[J]. Proceedings of the CSEE, 2018,38(07):2153-2162+2230.
[8] 邱家俊,塔娜. 电机的电磁阻尼理论与转子的非线性振动[J].振动工程学报,2000(03):12-19.
QIU Jiajun, TANA. Electromagnetic Damping Theory and Non-Linear Vibration of Rotors of Electric Motors[J]. Journal of Vibration Engineering, 2000(03):12-19.
[9] 陈修亮,车倍凯. 永磁同步电机矢量控制解耦方法的研究[J]. 电气技术, 2013(04):37-40+43.
CHEN Xiuliang, CHE Beikai. Research on decoupling control method for permanent magnet synchronous motor vector[J]. Electric Technology, 2013(04):37-40+43.
[10] 李健昌,韦笃取,罗晓曙,等. 混沌电机自适应时滞同步控制研究[J].振动与冲击,2014,33(16):105-108.
LI Jianchang, WEI Duqu, LUO Xiaoshu, et al. Adaptive lag-synchronization of chaotic permanent magnet synchronous motors[J]. Journal of Vibration and Shock, 2014,33(16):105-108.
[11] 裴文江,吴耀军,于盛林. 基于分形和子波变换自适应控制混沌[J].振动工程学报,1997(04):94-98.
PEI Wenjiang, WU Yaojun, YU Shenglin. Adaptive Control of Chaos Based on Fractal and Wavelet Transform[J]. Journal of Vibration Engineering, 1997(04):94-98.
[12] 耿洁,陈振,刘向东,等. 永磁同步电机的自适应逆控制[J]. 电工技术学报, 2011,26(06):51-55+61.
GENG Jie, CHEN Zhen, LIU Xiangdong, et al. adaptive inverse control of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2011,26(06):51-55+61.
[13] LUO S. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2014, 24(3): 033135.
[14] 汪海波,周波,方斯琛. 永磁同步电机调速系统的滑模控制[J]. 电工技术学报, 2009,24(09):71-77.
WANG Haibo, ZHOU Bo, FANG Sichen. A PMSM sliding mode control system based on exponential reaching law[J]. Transactions of China Electrotechnical Society,2009,24(09):71-77.
[15] 王添羡,林荣文. 基于滑模观测器的无位置传感器永磁同步电机转角转速计算[J]. 电气技术, 2014(03):41-45.
WANG Tian xian, LIN Rongwen. Rotor position and speed estimation of permanent magnetic synchronous machine based on sliding model observer[J]. Electric Technology, 2014(03):41-45.
[16] 刘计龙,肖飞,麦志勤,等. IF控制结合滑模观测器的永磁同步电机无位置传感器复合控制策略[J]. 电工技术学报, 2018,33(04):919-929.
LIU Jilong, XIAO Fei, MAI Zhiqin, et al. Hybrid position-sensorless control scheme for PMSM based on combination of IF control and sliding mode observer[J]. Transactions of China Electrotechnical Society, 2018,33(04):919-929.
[17] 崔明月,刘红钊,屈重年,等. 载荷时变的双层隔振系统自适应滑模控制[J].振动工程学报,2017,30(04):610-619.
CUI Mingyue, LIU Hongzhao, QU Chongnian, et al. Adaptive sliding mode control for two-stage vibration isolating system with time-varying loads[J]. Journal of Vibration Engineering, 2017, 30(04):610-619.
[18] WEI D Q, ZHANG B. Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory[J]. Chinese Physics B,2009,18(04):1399-1403.
[19] SAHA S, MISHRA A, PADMANABAN E, et al. Coupling conditions for globally stable and robust synchrony of chaotic systems[J]. Physical Review E, 2017, 95(6): 062204.
[20] NISHIKAWA T, MOTTER A E. Symmetric states requiring system asymmetry[J]. Physical review letters, 2016, 117(11): 114101.
[21] MISHRA A, HENS C, BOSE M, et al. Chimeralike states in a network of oscillators under attractive and repulsive global coupling[J]. Physical Review E, 2015, 92(6): 062920.
[22] HE R, HAN Q. Dynamics and Stability of Permanent-Magnet Synchronous Motor[J]. Mathematical Problems in Engineering, 2017, 2017(9): 1-8.
[23] 朱熀秋,秦英,鞠金涛,等. 基于磁链耦合分析的无轴承永磁同步电机通用数学模型[J].振动与冲击,2015,34(17):191-198.
ZHU Huangqiu, QIN Ying, JU Jintao, et al. General model of BPMSM based on flux linkage interaction analysis[J]. Journal of Vibration and Shock, 2015,34(17):191-198.
[24] CHANG S C. Synchronization and Controlling Chaos in a Permanent Magnet Synchronous Motor[J]. Journal of Vibration & Control, 2010, 16(12):1881-1894.
[25] ZHANG B, LI Z, MAO Z. Study on chaos and Stability in Permanent-magnet Synchronous Motors[J]. J of South China University of Technology, 2000, 28(12): 125-130.
[26] WEI D Q, LUO X S, ZHANG B. Chaos in complex motor networks induced by Newman—Watts small-world connections[J]. Chinese Physics B, 2011, 20(12): 128903.
[27] WEI D Q, ZHANG B, LUO X S, et al. Effects of couplings on the collective dynamics of permanent-magnet synchronous motors[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(10): 692-696.
[28] RULKOV N F, SUSHCHIK M M, TSIMRING L S, et al. Generalized synchronization of chaos in directionally coupled chaotic systems[J]. Physical Review E, 1995, 51(2): 980.
[29] 汪小帆,李翔,陈关荣. 复杂网络理论及其应用[M]. 北京:清华大学出版社, 2006.
PDF(1125 KB)

Accesses

Citation

Detail

Sections
Recommended

/