Early fault diagnosis of rolling bearings based on adaptive variational mode decomposition and the Teager energy operator

GU Ran1,CHEN Jie1,HONG Rongjing1,PAN Yubin1,LI Yuanyuan2

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (8) : 1-7.

PDF(2066 KB)
PDF(2066 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (8) : 1-7.

Early fault diagnosis of rolling bearings based on adaptive variational mode decomposition and the Teager energy operator

  • GU Ran1,CHEN Jie1,HONG Rongjing1,PAN Yubin1,LI Yuanyuan2
Author information +
History +

Abstract

It is difficult to extract early fault information of rolling bearings because the signal is mixed with abundant compounded background noise.An adaptive variational mode decomposition (AVMD) with the Teager energy operator method was proposed.Firstly, the minimum mean envelope entropy (MMEE) was used to search the optimal value of parameters.Subsequently, the weighted kurtosis (WK) was adopted to select the effective modal components for signal reconstruction.Finally, the reconstructed signal was analyzed by Teager energy spectrum to identify fault frequency.The analysis of vibration signals of bearings with weak fault shows that the proposed method improves the decomposition accuracy, and has stronger noise robustness and fault identification ability than ensemble empirical mode decomposition and local mean decomposition.

Key words

adaptive variational modal decomposition(AVMD) / minimum mean envelope entropy(MMEE) / weighted kurtosis(WK) / Teager energy operator(TEO) / weak fault diagnosis

Cite this article

Download Citations
GU Ran1,CHEN Jie1,HONG Rongjing1,PAN Yubin1,LI Yuanyuan2. Early fault diagnosis of rolling bearings based on adaptive variational mode decomposition and the Teager energy operator[J]. Journal of Vibration and Shock, 2020, 39(8): 1-7

References

[1]祝小彦, 王永杰.基于MOMEDA与Teager能量算子的滚动轴承故障诊断[J].振动与冲击, 2018, 37(6): 104-110. ZHU Xiaoyan, WANG Yongjie.Fault diagnosis of rolling bearing based on MOMEDA and teager energy operator[J].Journal of Vibration and Shock,2018, 37(6): 104-110. [2]LI Y B, YANG Y T, WANG X Z, et, al.Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine[J].Journal of Sound and Vibration, 2018, 428: 72-86. [3]WU Z H, HUANG N E.Ensemble empirical mode decomposition: a noise-assisted data analysis method[J].Advance in Adaptive Data Analysis, 2009, 1(1): 903-995. [4]JONATHAN S.The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface, 2005, 2(5): 443-454. [5]齐咏生, 张二宁, 高胜利,等.基于EEMD-KECA的风电机组滚动轴承故障诊断[J].太阳能学报, 2017, 38(7): 1943-1951. QI Yongsheng, ZHANG Erning, GAO Shengli, et al.Fault diagnosis of rolling bearing of wind turbine based on EEMD-KECA[J].Acta Energiae Solaris Sinica, 2017, 38(7): 1943-1951. [6]钟也磐, 陈卫, 杜炜.基于加强谱峭度的航空发动机齿轮毂故障诊断[J].推进技术, 2017, 38(5): 1140-1146. ZHONG Yenie, CHEN Wei, DU Wei, et al.Fault diagnosis of aero-engine gear hub based on enhanced spectral kurtosis[J].Journal of Propulsion Technology, 2017, 38(5): 1140-1146. [7]WANG L, LIU Z W, MIAO Q, et al.Complete ensemble local mean decomposition with adaptive noise and its application to fault diagnosis for rolling bearings[J].Mechanical Systems and Signal Processing, 2018, 106: 24-39. [8]DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. [9]赵岩, 朱均超, 张宝峰,等.基于VMD与Hilbert谱的旋转机械碰摩故障诊断方法[J].振动、测试与诊断, 2018, 38(2): 381-425. ZHAO Yan, ZHU Junchao, ZHANG Baofeng, et al.Rub impact fault diagnosis method of rotating machinery based on VMD and Hilbert spectrum[J].Journal of Vibration, Measurement & Diagnosis, 2018, 38(2): 381-425. [10]赵洪山, 李浪.基于最大相关峭度解卷积和变分模态分解的风电机组轴承故障诊断方法[J].太阳能学报, 2018, 39(2): 350-358. ZHAO Hongshan, LI Lang.Bearing fault diagnosis method for wind turbine based on maximum correlation kurtosis deconvolution and variational mode decomposition[J].Acta Energiae Solaris Sinica, 2018, 39(2): 350-358. [11]NIU M F, HU Y Y, SUN S L, et al.A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting[J].Applied Mathematical Modelling, 2018(57): 163-178. [12]郑小霞, 周国旺, 任浩翰,等.基于变分模态分解和排列熵的滚动轴承故障诊断[J].振动与冲击, 2017, 36(22): 22-28. ZHENG Xiaoxia, ZHOU Guowang, REN Haohan, et al.Rolling bearing fault diagnosis based on variational mode decomposition and permutation entropy[J].Journal of Vibration and Shock, 2017, 36(22): 22-28. [13]赵昕海, 张术臣, 李志深,等.基于VMD的故障特征信号提取方法[J].振动、测试与诊断, 2018, 38(1): 12-19. ZHAO Xinhai, ZHANG Shuchen, LI Zhishen, et al.Fault feature extraction method based on VMD[J].Journal of Vibration, Measurement & Diagnosis, 2018, 38(1): 12-19. [14]边杰.基于遗传算法参数优化的变分模态分解结合1.5维谱的轴承故障诊断[J].推进技术, 2017, 38(7): 1618-1624. BIAN Jie.Parameter optimization of genetic algorithm based on variational mode decomposition combined with 1.5 dimensional spectrum for bearing fault diagnosis[J].Journal of Propulsion Technology, 2017, 38(7): 1618-1624. [15]REN G, JIA J D, MEI J M, et al.A feature extraction method based on VMD and RDT and its application in engine crankshaft bearing fault[Z].Preprints, 2018. [16]赵洪山, 郭双伟, 高夺.基于奇异值分解和变分模态分解的轴承故障特征提取[J].振动与冲击, 2016, 35(22): 183-188. ZHAO Hongshan, GUO Shuangwei, GAO Duo.Feature extraction of bearing fault based on singular value decomposition and variational mode decomposition[J].Journal of Vibration and Shock, 2016, 35(22): 183-188. [17]钱林, 康敏, 傅秀清,等.基于VMD的自适应形态学在轴承故障诊断中的应用[J].振动与冲击, 2017, 36(3): 227-233. QIAN Lin, KANG Min, FU Xiuqing, et al.Application of adaptive morphology based on VMD in bearing fault diagnosis[J].Journal of Vibration and Shock, 2017, 36(3): 227-233.
PDF(2066 KB)

Accesses

Citation

Detail

Sections
Recommended

/