Effect of electrostatic force nonlinearity on resonant frequency and sensitivity stability of double sense-mode micro gyroscopes

HAO Shuying1,2,3,LI Weixiong1,2,3,LI Huijie1,2,3,ZHANG Qichang4,5,FENG Jingjing1,2,3,ZHANG Kunpeng1,2,3

Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (8) : 136-142.

PDF(1377 KB)
PDF(1377 KB)
Journal of Vibration and Shock ›› 2020, Vol. 39 ›› Issue (8) : 136-142.

Effect of electrostatic force nonlinearity on resonant frequency and sensitivity stability of double sense-mode micro gyroscopes

  • HAO Shuying1,2,3,LI Weixiong1,2,3,LI Huijie1,2,3,ZHANG Qichang4,5,FENG Jingjing1,2,3,ZHANG Kunpeng1,2,3
Author information +
History +

Abstract

Abstract:To avoid the influence of electrostatic forces nonlinearity,this article applied the offset of nonlinearity at high voltage and microbeam geometrical nonlinearity to achieve high stability and sensitivity in micro gyroscope’s design.Moreover, The regularities of structural parameters on the dynamic performance of the dual-detection micro-gyro were simultaneously investigated when the nonlinearity of the electrostatic force and the stiffness-cubic nonlinearity both existed under the edge effect.It was shown that the smaller comb-finger non-overlapping length and the greater the DC bias voltages, the greater resonance frequency offsets and the more obvious the effect of electrostatic force softening will be produced.There is a threshold value for non-overlapping length of comb-fingers.Above this value, the nonlinearity weakens to zero and the effect on the amplitude is saturated.This feature could maintain sensitivity’s stability of the double sense-mode micro gyroscope.The softening characteristics from the electrostatic force are balanced by microbeam’s geometrically nonlinear design and the adjustment of hardening characteristics caused by stiffness nonlinearity.The amplitude-frequency curve shows an ideal linear state.The phenomenon of frequency instability and amplitude jump caused by the hardening and softening of electrostatic force is avoided, and the micro-gyro has higher sensitivity and stability.

Key words

edge effect / electrostatic force nonlinearity / stiffness cubic nonlinearity / double sense-mode micro gyroscope / sensitivity

Cite this article

Download Citations
HAO Shuying1,2,3,LI Weixiong1,2,3,LI Huijie1,2,3,ZHANG Qichang4,5,FENG Jingjing1,2,3,ZHANG Kunpeng1,2,3. Effect of electrostatic force nonlinearity on resonant frequency and sensitivity stability of double sense-mode micro gyroscopes[J]. Journal of Vibration and Shock, 2020, 39(8): 136-142

References

[1] 李志宏. 微纳机电系统 (MEMS/NEMS) 前沿[J]. 中国科学: 信息科学, 2012, 42(12): 1599-1615. LI Zhi-hong. Emerging technologies of micro nanoelectromechanical systems(MEMS/NEMS)[J]. Science China Press, 2012, 42(12): 1599-1615. [2] 陈宏. 全对称双级解耦微机械振动式陀螺研究[D]. 哈尔滨:哈尔滨工业大学, 2008. CHEN Hong. Fully-symmetrical and doubly-decoupled micromachined gyroscope[D]. Harbin: Harbin Institute of Technology, 2008. [3] Braghin F, Resta F, Leo E. Nonlinear dynamics of vibrating MEMS[J]. Sensors & Actuators A Physical, 2007, 134 (1): 98-108. [4] 高嵘. 计入空气阻尼的MEMS微谐振器非线性动力学研究[J].传感器学报, 2006, 19(5): 1355-1357. GAO Rong. Nonlinear dynamic study of micro-resonator including viscous air damping[J]. Chinese Journal of sensors and actuators, 2006, 19(5): 1355-1357. [5] Ke L L, Wang Y S. Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory[J]. Physica E, 2011, 43(5): 1031-1039. [6] Zhang W M, Meng G. Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation[J]. IEEE Sensors Journal, 2007, 7(3): 370-380. [7] Zhang W M, Meng G, Chen D. Stability, nonlinearity and reliability of electrostatically actuated MEMS devices[J]. Sensors. 2007, 7(5): 760-796. [8] Ke L L, Wang Y S, Yang J, Kitipornchai S. Nonlinear free vibration of size-dependent functionally graded microbeams[J]. Int. J. Eng. Sci. 2012, 50(1): 256-267. [9] Beek J V, Puers R. A review of MEMS oscillators for frequency reference and timing applications[J]. Journal of Micromechanics & Microengineering, 2012, 22(1): 013001. [10] Xu J, Tsai J M. A process-induced-frequency-drift resilient 32 kHz MEMS resonator[J]. Journal of Micromechanics & Microengineering. 2012, 22(10): 430-435. [11] Liu R, Paden B, Turner K. MEMS resonators that are robust to process induced-feature width variations[J]. Frequency Control Symposium and PDA Exhibition. 2001, 11(5): 556-563. [12] 雷建华. 极板间距对平行板电容边缘效应的影响研究[J]. 电脑与电信,2013, (7): 57-58. LEI Jian-hua. Influence of plate spacing on capacitive edge effect[J]. Computer & Telecommunication, 2013,(7):57-58. [13] 许立,董林玺,王威. 静电梳齿结构横向间隙的边缘效应分析[J].传感器与微系统,2010, 29(8): 26-28. XU Li, DONG Lin-xi, WANG Wei. Lateral gap’s fringe effect analysis of electrostatic comb structure[J]. Transducer and Microsystem Technologies, 2010, 29(8): 26-28. [14] 梁新建,郑旭东,李丹东. 一种基于高线性度弓形支撑梁的新型MEMS陀螺设计[J].导航与控制,2011, 10(3): 49-53. LIANG Xin-jian, ZHENG Xu-dong, LI Dan-dong. A novel design of MEMS gyroscope based on high linearity bow-shaped beam[J]. Navigation and Control, 2011, 10(3): 49-53. [15] 王浩,陈伟平. 双解耦双自由度微机械陀螺的设计与仿真[D]. 哈尔滨:哈尔滨工业大学, 2007: 1-71. WANG Hao, CHEN Wei-ping. Design and simulation of 2-decoupled and 2-DOF micromachined gyroscope[D]. Harbin: Harbin Institute of Technology, 2007: 1-71. [16] 文永蓬,尚慧琳. 微陀螺动力学建模与非线性分析[J].振动与冲击, 2015, 34(4): 70-73. WEN Yong-peng, SHANG Hui-lin. Dynamic modeling and nonlinear analysis for a microgyroscope[J]. Journal of Vibration and Shock, 2015, 34(4): 70-73. [17] NAN C T, CHUNG Y S. Stability and resonance of micro-machined gyroscope under nonlinearity effects[J]. Nonlinear Dynamics, 2009, 56(4): 369-379. [18] 赵 剑,王洪喜,贾建援. 计及边缘效应的静电驱动微结构静电力计算[J]. MEMS器件与技术, 2006, 2(6): 97-111. ZHAO Jian, WANG Hong-xi, JIA Jian-yuan. Computation of electrostatic forces with edge effects for micro-structures[J]. MEMS Device & Technology, 2006, 2(6): 97-111. [19] 尚慧琳,张涛,文永蓬. 参数激励驱动微陀螺系统的非线性振动特性研究[J].振动与冲击, 2017, 36(1): 103-107. SHANG Hui-lin, ZHANG Tao, WEN Yong-peng. Nonlinear vibration behaviors of a micro-gyroscope system actuated by a parametric excitation[J]. Journal of Vibration and Shock, 2017, 36(1): 103-107. [20] Ding X K, Li H S, Ni Y F. Control methods for drive mode of MEMS vibratory gyroscope with spring hardening nonlinearity[J]. Journal of Chinese Inertial Technology, 2015, 23 (3):379-384. [21] 郝淑英,冯海茂,范孜. 覆冰输电线非线性瞬时固有频率研究[J].工程力学, 2013, 30(09): 283-287. HAO Shu-ying, FENG Hai-mao, FAN Zi. Investigation of nonlinear transient natural frequency of iced transmission line[J]. Engineering Mechanics, 2013, 30(09): 283-287. [22] Wang W, Lv X, Xu D. Design of multi-degree-of-freedom micromachined vibratory gyros cope with double sense-modes[J]. Measurement, 2014, 58: 6-11.
PDF(1377 KB)

472

Accesses

0

Citation

Detail

Sections
Recommended

/