Weak fault feature extraction of rolling bearing based on autocorrelation and energy operator enhancement

PEI Di, YUE Jianhai, JIAO Jing

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (11) : 101-108.

PDF(1072 KB)
PDF(1072 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (11) : 101-108.

Weak fault feature extraction of rolling bearing based on autocorrelation and energy operator enhancement

  • PEI Di, YUE Jianhai, JIAO Jing
Author information +
History +

Abstract

Aiming at weak impact components in rolling bearing’s early fault vibration signal and difficult fault feature extraction due to noise influencing, a method for rolling bearing weak fault feature extraction based on autocorrelation and Teager energy operator enhancement was proposed.Autocorrelation calculation and empirical mode decomposition (EMD) were used to suppress random noise and low-frequency noise in the whole frequency band of bearing vibration signal, respectively and highlight fault impact period.At the same time, cross-correlation coefficient-kurtosis index based on IMF energy ratio weighting was proposed to screen out the optimal IMF for signal reconstruction and enhancing fault information in the reconstructed signal.Teager energy operator (TEO) was used to act on the reconstructed signal to obtain the instantaneous energy sequence with enhanced fault impact characteristics, and the bearing fault characteristic frequency was extracted through power spectral analysis.The analysis of inner race fault’s simulated signal and rolling element fault’s measured signal showed that the proposed method can effectively suppress bearing vibration signal noise and significantly enhance weak characteristics of early faults.

Key words

autocorrelation / intrinsic mode function (IMF) energy ratio weighting / Teager energy operator (TEO) / feature enhancement / rolling bearing

Cite this article

Download Citations
PEI Di, YUE Jianhai, JIAO Jing. Weak fault feature extraction of rolling bearing based on autocorrelation and energy operator enhancement[J]. Journal of Vibration and Shock, 2021, 40(11): 101-108

References

[1]阳建宏, 黎敏, 丁福焰, 等.滚动轴承诊断现场实用技术[M].北京: 机械工业出版社, 2015.
[2]苏文胜, 王奉涛, 张志新, 等.EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J].振动与冲击, 2010,29(3):18-21.
SU Wensheng, WANG Fengtao, ZHANG Zhixin, et al.Application of EMD denoising and spectral kurtosis in early fault diagnosis of rolling element bearings[J].Journal of Vibration and Shock, 2010, 29(3): 18-21.
[3]王宏超, 陈进, 董广明.基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J].机械工程学报, 2013,49(1):88-94.
WANG Hongchao, CHEN Jin, DONG Guangming.Fault diagnosis method for rolling bearing’s weak fault based on minimum entropy deconvolution and sparse decomposition[J].Journal of Mechanical Engineering, 2013, 49(1):88-94.
[4]唐贵基, 王晓龙.IVMD融合奇异值差分谱的滚动轴承早期故障诊断[J].振动、测试与诊断, 2016,36(4):700-707.
TANG Guiji, WANG Xiaolong.An incipient fault diagnosis method for rolling bearing based on improved variational mode decomposition and singular value difference spectrum[J].Journal of Vibration, Measurement & Diagnosis, 2016, 36(4): 700-707.
[5]JUNSHENG C, DEJIE Y, YU Y.The application of energy operator demodulation approach based on EMD in machinery fault diagnosis[J].Mechanical Systems and Signal Processing, 2007,21(2):668-677.
[6]李辉, 郑海起, 杨绍普.基于EMD和Teager能量算子的轴承故障诊断研究[J].振动与冲击, 2008,27(10):15-17.
LI Hui, ZHENG Haiqi, YANG Shaopu.Bearing fault diagnosis based on EMD and Teager Kaiser energy operator[J].Journal of Vibration and Shock, 2008, 27(10): 15-17.
[7]夏均忠, 赵磊, 白云川, 等.基于Teager能量算子和ZFFT的滚动轴承故障特征提取[J].振动与冲击, 2017,36(11):106-110.
XIA Junzhong, ZHAO Lei, BAI Yunchuan, et al.Fault feature extraction of rolling element bearings based on Teager energy operator and ZFFT[J].Journal of Vibration and Shock, 2017, 36(11): 106-110.
[8]鞠萍华, 秦树人, 赵玲.基于LMD的能量算子解调方法及其在故障特征信号提取中的应用[J].振动与冲击, 2011,30(2):1-4.
JU Pinghua, QIN Shuren, ZHAO Ling.Energy operator demodulating approach based on LMD and its application in extracting characteristics of a fault signal[J].Journal of Vibration and Shock, 2011, 30(2): 1-4.
[9]杨斌, 祁映强, 王建国, 等.基于自相关能量算子解调的旋转机械故障诊断方法[J].机械设计与制造, 2015(9):69-72.
YANG Bin, QI Yingqiang, WANG Jianguo, et al.Fault diagnosis of rotating machinery based on the autocorrelation energy operator demodulation approach[J].Machinery Design & Manufacture, 2015(9): 69-72.
[10]王少锋, 王戈, 王建国, 等.基于EMD与自相关的能量算子解调机械故障诊断[J].机械设计与制造, 2016(6):174-178.
WANG Shaofeng, WANG Ge, WANG Jianguo, et al.Fault diagnosis of machinery based on the EMD and the autocorrelation energy demodulation.[J].Machinery Design & Manufacture, 2016(6): 174-178.
[11]王天金, 冯志鹏, 郝如江, 等.基于Teager能量算子的滚动轴承故障诊断研究[J].振动与冲击, 2012,31(2):1-5.
WANG Tianjin, FENG Zhipeng, HAO Rujiang, et al.Fault diagnosis of rolling element bearings based on Teager energy operator[J].Journal of Vibration and Shock, 2012, 31(2): 1-5.
[12]马增强, 李亚超, 刘政, 等.基于变分模态分解和Teager能量算子的滚动轴承故障特征提取[J].振动与冲击, 2016,35(13):134-139.
MA Zengqiang, LI Yachao, LIU Zheng, et al.Rolling bearings’ fault geature extraction based on variational mode decomposition and Teager energy operator[J].Journal of Vibration and Shock, 2016, 35(13): 134-139.
[13]王奉涛, 苏文胜.滚动轴承故障诊断与寿命预测[M].北京: 科学出版社, 2018.
[14]周小龙, 刘薇娜, 姜振海, 等.改进的HHT方法及其在旋转机械故障诊断中的应用[J].振动与冲击, 2020,39(7):189-195.
ZHOU Xiaolong, LIU Weina, JIANG Zhenhai, et al.Improved HHT method and its applications in rotating machinery fault diagnosis[J].Journal of Vibration and Shock, 2020, 39(7): 189-195.
[15]谷然, 陈捷, 洪荣晶, 等.基于改进自适应变分模态分解的滚动轴承微弱故障诊断[J].振动与冲击, 2020,39(8):1-7.
GU Ran, CHEN Jie, HONG Rongjing, et al.Early fault diagnosis of rolling bearings based on adaptive variational mode decomposition and the Teager energy operator[J].Journal of Vibration and Shock, 2020, 39(8): 1-7.
[16]MARAGOS  P, KAISER  J F, QUATIERI  T F.On amplitude and frequency demodulation using energy operators[J].IEEE Transactions on Signal Processing, 1993, 41(4):1532-1550.
[17]RANDALL R B, SMITH W A.Uses and mis-uses of energy operators for machine diagnostics[J].Mechanical Systems and Signal Processing, 2019,133:106199.
[18]Case Western Reserve University Bearing Data Center Website[EB/OL].[2019-12-28]https://csegroups.case.edu/bearingdatacenter/home.
[19]SMITH W A, RANDALL R B.Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J].Mechanical Systems and Signal Processing, 2015,64/65:100-131.
 
PDF(1072 KB)

541

Accesses

0

Citation

Detail

Sections
Recommended

/