Iterative frequency estimation algorithm for harmonic real signals based on spectrum shifting

MOU Zelong1, TU Yaqing1, CHEN Peng2, LIU Yan1

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (11) : 128-133.

PDF(992 KB)
PDF(992 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (11) : 128-133.

Iterative frequency estimation algorithm for harmonic real signals based on spectrum shifting

  • MOU Zelong1, TU Yaqing1, CHEN Peng2, LIU Yan1
Author information +
History +

Abstract

In order to suppress the influence of spectrum leakage of harmonic real signals, an iterative frequency estimation algorithm for harmonic real signals based on spectrum shifting was proposed.When estimating the frequency of a certain harmonic component, all other components with negative frequencies and positive ones were interference components to produce spectrum leakage.According to each interference component’s frequency, the spectrum shifting was done to suppress the interference component until a signal with a single component was obtained, its frequency was estimated with the parabolic interpolation algorithm.After frequencies of all harmonic components were obtained, suppressing interference components was performed again to update a single component signal for the purpose of estimating a more accurate frequency value.Simulation test results showed that the proposed algorithm can suppress interference components, and improve the frequency estimation accuracy of harmonic real signals; the mean square error of frequency estimation is closer to Cramer-Rao low bound (CRLB).

Key words

frequency estimation / spectrum leakage / harmonic real signal / spectrum shifting

Cite this article

Download Citations
MOU Zelong1, TU Yaqing1, CHEN Peng2, LIU Yan1. Iterative frequency estimation algorithm for harmonic real signals based on spectrum shifting[J]. Journal of Vibration and Shock, 2021, 40(11): 128-133

References

[1]WEN H, ZHANG J H, MENG Z, et al.Harmonic estimation using symmetrical interpolation FFT based on triangular self-convolution window[J].IEEE Transactions on Industrial Informatics, 2017, 11(1):16-26.
[2]陈和洋,吴文宣,郑文迪,等.电力系统谐波检测方法综述[J].电气技术,2019,20(9):1-6.
CHEN Heyang, WU Wenxuan, ZHENG Wendi, et al.Reviews of power system harmonic measurement methods[J].Electrical Engineering, 2019, 20(9):1-6.
[3]郑俊飞,王健,夏银水,等.基于谐波雷达的新型裂缝传感器设计[J].传感技术学报,2019,32(9):1297-1302.
ZHENG Junfei, WANG Jian, XIA Yinshui, et al.Design of a novel crack sensor based on harmonic radar[J].Chinese Journal of Sensors and Actuators, 2019, 32(9):1297-1302.
[4]MARZI Z, RAMASAMY D, MADHOW U.Compressive channel estimation and tracking for large arrays in mm wave picocells[J].IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 514-527.
[5]杜亚震,王文华,黄一.基于增量谐波平衡方法的Spar平台垂荡纵摇耦合内共振响应研究[J].振动与冲击,2020,39(1):85-90.
DU Yazhen, WANG Wenhua, HUANG Yi.Swing-pitch coupled internal resonance responses of Spar platform based on IHBM[J].Journal of Vibration and Shock, 2020, 39(1): 85-90.
[6]何其伟,俞翔,毛为民.高维强非线性隔振系统谐波及分岔分析[J].振动与冲击,2016,35(11):61-65.
HE Qiwei, YU Xiang, MAO Weimin.Subharmonic and bifurcation analysis for high-dimensional strongly nonlinear vibration isolation system[J].Journal of Vibration and Shock, 2016, 35(11): 61-65
[7]张刚,李红威.混合多稳态随机共振的故障信号检测[J].振动与冲击,2019,38(18):9-17.
ZHANG Gang, LI Hongwei.Hybrid tri-stable stochastic resonance system used for fault signal detection[J].Journal of Vibration and Shock, 2019, 38(18): 9-17.
[8]LI J F, LI D, JIANG D F, et al.Extended-aperture unitary root MUSIC-based DOA estimation for coprime array[J].IEEE Communications Letters, 2018,22(4):752-755.
[9]ZAI P G, MOHD A M R, YEE V T, et al.Hybrid FFT-ADALINE algorithm with fast estimation of harmonics in power system[J].Signal Processing, 2016,10(8):855-864.
[10]CHANDRASEKHAR K, HAMSAPRIYE, LAKSHMEESHA V K.Analysis of Pisarenko harmonic decomposition-based sub-Nyquist rate spectrum sensing for broadband cognitive radio[J].Defence Science Journal, 2017, 67(1):80-87.
[11]SCHMIDT R, SCHMIDT R O.Multiple emitter location and signal parameter estimation[J].IEEE Transactions on Antennas & Propagation, 1986, 34(3):276-280.
[12]卢洪瑞,郑威,许劲峰.基于最小模MUSIC算法的电力谐波/间谐波检测方法[J].江苏科技大学学报(自然科学版),2018,32(3):370-376.
LU Hongrui, ZHENG Wei, XU Jinfeng.Detection method of harmonic and inter-harmonic in power based on minimum modulus MUSIC algorithm[J].Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2018, 32(3): 370-376.
[13]蔡涛,段善旭,刘方锐.基于实值MUSIC算法的电力谐波分析方法[J].电工技术学报,2009,24(12):149-155.
CAI Tao, DUAN Shanxu, LIU Fangrui.Power harmonic analysis based on real-valued spectral MUSIC algorithm[J].Transactions of China Electrotechnical Society, 2009, 24(12): 149-155.
[14]HUANG S, ZHANG H J, SUN H, et al.Frequency estimation of multiple sinusoids with three sub-Nyquist channels[J].Signal Processing, 2017, 139: 96-101.
[15]卿柏元,滕召胜,高云鹏,等.基于Nuttall窗双谱线插值FFT的电力谐波分析方法[J].中国电机工程学报,2008(25):153-158.
QING Baiyuan, TENG Zhaosheng, GAO Yunpeng, et al.An approach for electrical harmonic analysis based on Nuttall window double-spectrum-line interpolation FFT[J].Proceedings of the CSEE, 2008(25): 153-158.
[16]张鸿博,蔡晓峰,鲁改凤.基于双窗全相位FFT双谱线校正的电力谐波分析[J].仪器仪表学报,2015,36(12):2835-2841.
ZHANG Hongbo, CAI Xiaofeng, LU Gaifeng.Double-spectrum-line correction method based on double-window all-phase FFT for power harmonic analysis[J].Chinese Journal of Scientific Instrument, 2015, 36(12): 2835-2841.
[17]DJUKANOVIC S, POPOVIC′-BUGARIN V.Efficient and accurate detection and frequency estimation of multiple sinusoids[J].IEEE Access, 2019, 7:1118-1125.
[18]陈鹏,涂亚庆,李明,等.基于迭代插值的实复转换频率估计算法[J].振动与冲击,2019,38(18):35-39.
CHEN Peng, TU Yaqing, LI Ming, et al.Real-to-complex-transformation frequency estimation algorithm based on iterative interpolation[J].Journal of Vibration and Shock, 2019, 38(18): 35-39.
[19]DJUKANOVIC′ S, POPOVIC′ T,
MITROVIC′ A.Precise sinusoid frequency estimation based on parabolic interpolation[C]//2016 24th Telecommunications Forum (TELFOR).Belgrade:IEEE, 2017.
[20]KAY S.Fundamentals of statistical signal processing, volume III: practical algorithm development[J].Technometrics, 1993, 37(4):465-466.
PDF(992 KB)

Accesses

Citation

Detail

Sections
Recommended

/