Approximate analytical solution to a class of membrane vibration equations with time fractional derivatives

GE Zhixin1, CHEN Xianjiang2

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (11) : 248-251.

PDF(998 KB)
PDF(998 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (11) : 248-251.

Approximate analytical solution to a class of membrane vibration equations with time fractional derivatives

  • GE Zhixin1, CHEN Xianjiang2
Author information +
History +

Abstract

Here, a class of membrane vibration equation with time fractional derivative was studied.The equation boundary varied with sinusoidal perturbation.Taylor series was applied to expand the boundary independent variable, and then multi-scale were introduced to the original equation and boundary.By using the definition and properties of Riemann-Liouville fractional derivative, the approximate solution of the equation for the zero-order small parameter was obtained.Furthermore, the consistent effectiveness of the solution was proved by using the theory of differential inequalities.Finally, the influence of each parameter on the solution was analyzed using graphs.

Key words

multi-scale / time fractional derivative / differential inequality

Cite this article

Download Citations
GE Zhixin1, CHEN Xianjiang2. Approximate analytical solution to a class of membrane vibration equations with time fractional derivatives[J]. Journal of Vibration and Shock, 2021, 40(11): 248-251

References

[1]PODLUBNY I.Fractional differential equations[M].New York:Academic Press,1999.
[2]SAMKO S G, KILBAS A A, MARICHEV O I.Fractional integrals and derivative: theory and aplications[M].New York: Gorden and Breach Press,1993.
[3]KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and aplications of fractional differential equations[M].Amsterdam:Elsevier,2006.
[4]RAND R H, SAH S M, SUCHORSKY M K.Fractional mathieu equation[J].Communications in Nonlinear and Science Numerical Simulation,2010, 15(11):3254-3262.
[5]KAIKINA E I, NAUMKIN P I, HAYASHI N.On a nonlinear equation with fractional derivative[J].Differential Equations, 2010, 46(1):83-100.
[6]张晓棣,陈文.三种分形和分数阶导数阻尼振动模型的比较研究[J].固体力学学报, 2009, 30(5):496-503.
ZHANG Xiaodi, CHEN Wen.Comparison of three fractal and fractional derivative damped oscillation models[J].Chinese Journal of Solid Mechanics,2009, 30(5):496-503.
[7]MESBAHI A, HAERI M, NAZARI M, et al.Fractional delayed damped Mathieu equation[J].International Journal of Control, 2015, 88(3):622-630.
[8]陈林聪, 李海锋, 李钟慎,等.宽带噪声激励下含分数阶导数的Duffing-van del Pol 振子的稳态响应[J].中国科学: 物理学力学天文学,2013, 43 (5):670-677.
CHEN Lincong, LI Haifeng, LI Zhongshen, et al.Stationary response of Duffing-van del Pol oscillator with fractional derivative under wide-band noise excitations[J].Science Sinica Physics, Mechanics & Astronomy, 2013, 43(5): 670-677.
[9]杨建华, 刘厚广, 程刚.一类五次方振子系统的叉形分叉及振动共振研究[J].物理学报, 2013,62(18):180503.
YANG Jianhua, LIU Houguang, CHENG Gang.The pitchfork bifurcation and vibrational resonance in a quintic oscillator[J].Acta Physica Sinica,2013,62(18): 180503.
[10]莫嘉琪.非线性分数阶微分方程的奇摄动[J].应用数学学报,2006, 29(6):1086-1090.
MO Jiaqi.Singular perturbation of nonlinear fractional differential equation[J].Acta Mathematicae Applicatae Sinica,2006, 29(6):1086-1090.
[11]葛志新,陈咸奖,陈松林.一类含有分数阶导数的参数激励振动问题[J].振动与冲击,2017, 36(4): 88-92.
GE Zhixin, CHEN Xianjiang, CHEN Songlin.A class of parametric excitation vibration problem with fractional derivative[J].Journal of Vibration and Shock, 2017, 36(4): 88-92.
[12]谷超豪,李大潜,陈恕行,等.数学物理方程[M].北京: 高等教育出版社, 2002.
[13]NAYFEH A H.Introduction to perturbation techniques[M].Shanghai: Shanghai Translation Publishing House, 1990.
[14]章国华,侯斯F A.非线性奇异摄动现象:理论和应用[M].福建:福建科学技术出版社,1989.
PDF(998 KB)

284

Accesses

0

Citation

Detail

Sections
Recommended

/