Vibration mode and flange root stress of side bushing of converter transformer valve

ZHAO Lihua, CAI Weizhe, HUANG Xiaolong, REN Junwen, JIA Lichuan, WANG Zhong

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (13) : 201-209.

PDF(1800 KB)
PDF(1800 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (13) : 201-209.

Vibration mode and flange root stress of side bushing of converter transformer valve

  • ZHAO Lihua, CAI Weizhe, HUANG Xiaolong, REN Junwen, JIA Lichuan, WANG Zhong
Author information +
History +

Abstract

Bushing flange is the weak part of side bushing of converter transformer valve, it is subjected to complex environmental dynamic forces, such as, vibration of converter transformer, and it is easy to have fatigue cracking due to long-term action of mechanical load, and cause shutdown of converter transformer. Stress concentration is the main factor leading to structural fatigue cracking, but there are few studies on stress distribution and fatigue of flanges. Here, in order to optimize root structure of bushing flange and improve its fatigue strength, the FE simulation method was used to analyze stress distribution of flange, and study stress concentration characteristics of flange under different root structures. The modal analysis and response spectrum analysis were used to study stress distribution of flange under vibration load. The study results showed that stress is concentrated at flange corner and decreases with increase in curvature radius of flange corner; the stiffener connected with flange on bushing can obviously reduce flange corner stress, and the reduction amplitude increases with increase in width and height of stiffener; triangular stiffener can obviously reduce flange corner stress near stress concentration position, and the reduction amplitude decreases with increase in installation angle of  stiffener; the maximum stress at flange corner of the bushing subjected to vertical and axial vibrations is obviously suppressed by the connected stiffener.

Key words

side bushing of converter transformer valve / flange / finite element (FE) analysis / stress concentration

Cite this article

Download Citations
ZHAO Lihua, CAI Weizhe, HUANG Xiaolong, REN Junwen, JIA Lichuan, WANG Zhong. Vibration mode and flange root stress of side bushing of converter transformer valve[J]. Journal of Vibration and Shock, 2021, 40(13): 201-209

References

[1]孙夏青, 赵林杰, 王文奎, 等. 换流变压器阀侧套管选型技术[J]. 南方电网技术, 2015, 9(4): 60-67. 
SUN Xiaqing, ZHAO Linjie, WANG Wenkui, et al. Type selection technology of valve-side bushing of converter transformer[J]. Southern Power System Technology, 2015, 9(4): 60-67.
[2]ZHANG Enyue, WEN Zheng, LI Wei, et al . Development and its application of D C bushings of valve hall side of converter transformer[C]//2014 International Conference on Power System Technology. Chengdu: IEEE, 2014.
[3]姜东飞, 蔡晶, 赵海鹏, 等. 振动模态下复合套管电场仿真分析[J]. 智慧电力, 2018, 46(11): 112-116.
JIANG Dongfei, CAI Jing, ZHAO Haipeng, et al. Simulation analysis of electric field in composite bushing under vibration modes[J]. Smart Power, 2018, 46(11): 112-116.
[4]李鹏程. 基于振动信号分析法的换流变压器振动特性及其影响因素研究[J]. 高压电器, 2018, 54(4): 142-151.
LI Pengcheng. Vibration characteristics and influential factors of converter transformer based on vibration signal analysis[J]. High Voltage Apparatus, 2018, 54(4): 142-151.
[5]唐文秋. 应力集中、尺寸和表面对金属疲劳强度影响的研究[D]. 沈阳:东北大学, 2008.
[6]胡本润,刘建中,陈剑峰, 疲劳缺口系数K_f与理论应力集中系数K_t之间的关系[J]. 材料工程, 2007(7): 70-73.
HU Benrun,LIU Jianzhong, CHEN Jianfeng, Relationship between fatigue notch factor K_f and stress concentration factor K_t[J]. Journal of Materials Engineering, 2007(7): 70-73.
[7]MIRANDA A C D O, ANTUNES M A, ALARCN M V G, et al. Use of the stress gradient factor to estimate fatigue stress concentration factors Kf[J]. Engineering Fracture Mechanics, 2019, 206: 250-266.
[8]何畅, 谢强, 马国梁, 等. ±800 kV换流变压器-套管体系的抗震性能[J]. 高电压技术, 2018, 44(6): 1878-1883.
HE Chang, XIE Qiang, MA Guoliang, et al. Seismic behavior of ±800 kV UHV converter transformer and bushing system[J]. High Voltage Engineering, 2018, 44(6): 1878-1883.
[9]孙宇晗, 程永锋, 卢智成, 等. 1 100 kV复合外绝缘套管地震模拟振动台试验研究[J]. 高电压技术, 2017, 43(10): 3224-3230.
SUN Yuhan, CHENG Yongfeng, LU Zhicheng, et al. Study on earthquake simulation shaking table test of 1 100 kV composite external insulation bushing[J].High Voltage Engineering, 2017, 43(10): 3224-3230.
[10]王明胜, 杨仁毅, 李乃一, 等. 换流变压器阀侧直流套管机械性能三维仿真[J]. 山东电力技术, 2015, 42(2): 64-68.
WANG Mingsheng, YANG Renyi, LI Naiyi, et al. Three-dimensional simulation on mechanical property of DC_bushing for the converter transformer[J].Shandong Electric Power, 2015, 42(2): 64-68.
[11]吴光亚, 孙岗, 张锐, 等. 特高压空心复合绝缘子机械强度有限元计算分析[J]. 电瓷避雷器, 2014(4): 7-13.
WU Guangya, SUN Gang, ZHANG Rui, et al. Calculation and analysis on mechanical strength of UHV hollow_composite insulator by finite element method[J].Insulators and Surge Arresters, 2014(4): 7-13.
[12]黄清, 方江, 徐平晶. 弯矩载荷下的带筋法兰盘厚度设计[J]. 机械工程师, 2017(6): 101-103.
HUANG Qing, FANG Jiang, XU Pingjing. Design of rigid flange thickness subjected to bending moment[J].Mechanical Engineer, 2017(6): 101-103.
[13]徐赵东. 结构动力学[M]. 北京: 科学出版社, 2007.
[14]GUPTA A K. Response spectrum method in seismic analysis and design of structures[M]. London: Routledge, 2017.
[15]CHEN J, LI G, RACIC V. Acceleration response spectrum for predicting floor vibration due to occupants jumping[J]. Engineering Structures, 2016, 112: 71-80.
[16]刘庆林. 传统反应谱CQC法研究与改进[D]. 杭州:浙江大学, 2007.
[17]王誉瑾, 钱宏亮, 范峰. 结构用铝合金6082-T6材料本构关系及力学参数试验研究[J]. 工程力学, 2013, 30(增刊1): 309-313. 
WANG Yujin, QIAN Hongliang, FAN Feng. Experimental study on stress-strain relationship and mechanical properties of aluminum alloy 6082-T2[J]. Engineering Mechanics, 2013,30(Sup1): 309-313.
PDF(1800 KB)

Accesses

Citation

Detail

Sections
Recommended

/