Predicting critical flutter wind speed of a streamlined box girder by using machine learning

MEI Hanyu,WANG Qi,LIAO Haili,LIU Minwei

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (14) : 195-202.

PDF(2080 KB)
PDF(2080 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (14) : 195-202.

Predicting critical flutter wind speed of a streamlined box girder by using machine learning

  • MEI Hanyu1,WANG Qi1,2,LIAO Haili1,2,LIU Minwei1
Author information +
History +

Abstract

To quickly evaluate the flutter performance of a streamlined box girder in the preliminary stage of bridge design, critical flutter wind speeds of 15 different sectional models at 5 different angles of attack were tested by free vibration tests in wind tunnel and utilized to build flutter prediction models by inputting dimensional information and dynamic parameters based on four different machine learning algorithms, including support vector regression, neural network, random forest regression and Gaussian process regression.The results show that the support vector regression model has the highest prediction accuracy and get the best effect performance in the prediction of some practical bridges while the neural network model is poor, but its relative error is still far lower than that of the calculation results of three different simplified critical flutter wind speed formulas provided in the present JTG/T 3360-01—2018 Wind-resistant Design Specification for Highway Bridges.The results of the paper meet the expected requirements and the dataset can be further expanded in the future so as to provide a powerful tool for wind designers to evaluate the flutter performance of streamlined box girders with high-precision.

Key words

streamlined box girder / machine learning / flutter

Cite this article

Download Citations
MEI Hanyu,WANG Qi,LIAO Haili,LIU Minwei. Predicting critical flutter wind speed of a streamlined box girder by using machine learning[J]. Journal of Vibration and Shock, 2021, 40(14): 195-202

References

[1]LARSEN A. Aerodynamic aspects of the final design of the 1 624 m suspension bridge across the Great Belt[J].Journal of Wind Engineering and Industrial Aerodynamics, 1993, 48(2/3): 261-285.
[2]CHEN A R, GUO Z S, ZHOU Z Y, et al.Study of aerodynamic performance of runyang bridge: WT200218[R].Shanghai: Tongji University, 2002.
[3]王骑. 大跨度桥梁断面非线性自激气动力与非线性气动稳定性研究[D].成都: 西南交通大学,2011.
[4]林思源.矩形和流线型箱梁断面非线性自激气动力特性研究[D].成都: 西南交通大学, 2019.
[5]SCANLAN R  H,TOMKO J.Airfoil and bridge deck flutter derivatives[J].Journal of the Engineering Mechanics Division ,1971,97(6):1717-1733.
[6]公路桥梁抗风设计规范:JTG/T 3360-01—2018 [S].北京:中华人民共和国交通运输部, 2018.
[7]廖海黎, 闫雨轩, 王骑, 等.扁平箱梁颤振计算公式中联合折减系数的量化研究[J].中国公路学报, 2019, 32(1): 67-75.
LIAO Haili, YAN Yuxuan, WANG Qi, et al.Quantification of joint reduction coefficient of flutter closed-form solutions for flat box girders[J].China Journal of Highway and Transport, 2019, 32(1): 67-75.
[8]顾明, 周晅毅.神经网络方法在大跨度屋面风压研究中的应用[J].工程力学, 2003, 20(4): 99-103.
GU Ming, ZHOU Xuanyi.Application of neural network in the prediction of wind load on long span roofs[J].Engineering Mechanics, 2003, 20(4): 99-103.
[9]JUNG S, GHABOUSSI J, KWON S D.Estimation of aeroelastic parameters of bridge decks using neural networks[J].Journal of Engineering Mechanics, 2004, 130(11): 1356-1364.
[10]LUTE V, UPADHYAY A, SINGH K K.Support vector machine based aerodynamic analysis of cable stayed bridges[J].Advances in Engineering Software, 2009, 40(9): 830-835.
[11]WU T, KAREEM A.Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network[J].Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(4): 378-388.
[12]YU C J, LI Y L, ZHANG M J.An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on elman neural network[J].Energy Conversion and Management, 2017, 148: 895-904.
[13]李维勃, 王国砚, 钱志浩, 等.基于径向基函数的冷却塔风场重构[J].工程力学, 2019, 36(5): 226–234.
LI Weibo, WANG Guoyan, QIAN Zhihao, et al.Wind field reconstruction of cooling towers based on the radial basis function[J].Engineering Mechanics, 2019, 36(5): 226-234.
[14]HUANG D M, HE S Q, HE X H, et al.Prediction of wind loads on high-rise building using a BP neural network combined with POD[J].Journal of Wind Engineering and Industrial Aerodynamics, 2017, 170: 1-17.
[15]LI S, LAIMA S, LI H.Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression[J].Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 196-211.
[16]李乔, 杨兴旺.桥梁主梁断面空气力学特性分析的人工神经网络方法[J].中南公路工程, 2000, 25(3): 56-59.
LI Qiao, YANG Xingwang.Neural network method for aerodynamic characteristic analysis of bridge girder[J].Central South Highway Engineering, 2000, 25(3): 56-59.
[17]陈讷郁, 葛耀君.基于人工神经网络的典型桥梁断面气动参数识别[J].土木工程学报, 2019, 52(8): 91-97.
CHEN Neyu, GE Yaojun.Aerodynamic parameter identification of typical bridge sections based on artificial neural network[J].China Civil Engineering Journal, 2019, 52(8): 91-97.
[18]CHEN X. Improved understanding of bimodal coupled bridge flutter based on closed-form solutions[J].Journal of Structural Engineering, 2007, 133(1): 22-31.
[19]MATSUMOTO M, MATSUMIYA H, FUJIWARA S, et al.New consideration on flutter properties based on step-by-step analysis[J].Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(8/9): 429-437.
[20]李航. 统计学习方法[M].北京: 清华大学出版社, 2012.
[21]周志华. 机器学习[M].北京: 清华大学出版社, 2016.
[22]GOODFELLOW I, BENGIO Y, COURVILLE A.Deep learning[M].Cambridge: MIT Press, 2016.
[23]尹宝才, 王文通, 王立春.深度学习研究综述[J].北京工业大学学报, 2015, 41(1): 48-59.
YIN Baocai, WANG Wentong, WANG Lichun.Review of deep learning[J].Journal of Beijing University of Technology, 2015, 41(1): 48-59.
[24]LIAW A, WIENER M.Classification and regression by random forest[J].R News, 2002, 2(3): 18-22.
[25]WILLIAMS C K, RASMUSSEN C E.Gaussian processes for machine learning[M].Cambridge: MIT Press, 2006.
[26]REICH Y, BARAI S V.Evaluating machine learning models for engineering problems[J].Artificial Intelligence in Engineering, 1999, 13(3): 257-272.
[27]杨詠昕,葛耀君, 项海帆.中央稳定板颤振控制效果和机理研究[J].同济大学学报(自然科学版), 2007, 35(2): 149-155.
YANG Yongxin, GE Yaojun, XIANG Haifan.Flutter controlling effect and mechanism of central stabilizer[J].Journal of Tongji University (Natural Science), 2007, 35(2): 149-155.
[28]王骑, 廖海黎, 李明水, 等.流线型箱梁气动外形对桥梁颤振和涡振的影响[J].公路交通科技, 2012, 29(8): 44-50.
WANG Qi, LIAO Haili, LI Mingshui, et al.Influence of aerodynamic shape of streamline box girder on bridge flutter and vortex-induced vibration[J].Journal of Highway and Transportation Research and Development, 2012, 29(8): 44-50.
PDF(2080 KB)

Accesses

Citation

Detail

Sections
Recommended

/