[1]杜亚震,王文华,黄一. 基于增量谐波平衡方法的Spar平台垂荡纵摇耦合内共振响应研究[J].振动与冲击,2020,39(1):85-90.
DU Yazhen, WANG Wenhua, HUANG Yi. Swing-pitch coupled internal resonance responses of spar platform based on IHBM[J]. Journal of Vibration and Shock, 2020, 39(1): 85-90.
[2]陈鹏, 涂亚庆, 李明, 等. 基于迭代插值的实复转换频率估计算法[J]. 振动与冲击, 2019, 38(18): 35-39.
CHEN Peng, TU Yaqing, LI Ming, et al. Real-to-complex-transformation frequency estimation algorithm based on iterative interpolation [J]. Journal of Vibration and Shock, 2019, 38(18): 35-39.
[3]HAMSAPRIYE C K, LAKSHMEESHA V K. Analysis of pisarenko harmonic decomposition-based subNyquist rate spectrum sensing for broadband cognitive radio[J].Defence Science Journal, 2017, 67(1):80-87.
[4]SO H C, CHAN K W, CHAN Y T, et al. Linear prediction approach for efficient frequency estimation of multiple real sinusoids: algorithms and analyses[J]. IEEE Transactions on Signal Processing, 2005, 53(7):2290-2305.
[5]LI J, LI D, JIANG D, et al. Extended-aperture unitary root MUSIC-based DOA estimation for coprime array[J]. IEEE Communications Letters, 2018:752-755.
[6]HUANG S, ZHANG H J, SUN H, et al. Frequency estimation of multiple sinusoids with three sub-nyquist channels [J]. Signal Processing, 2017, 139: 96-101.
[7]陈鹏, 涂亚庆, 刘言, 等. 相减策略的实复转换式参数估计算法[J]. 振动与冲击, 2020, 39(21): 211-216.
CHEN Peng, TU Yaqing, LIU Yan, et al. Real-complex conversion parametric estimation algorithm based on subtraction strategy [J]. Journal of Vibration and Shock, 2020, 39(21): 211-216.
[8]陈鹏, 涂亚庆, 沈艳林, 等. 实复转换式衰减信号参数估计算法[J]. 振动与冲击, 2020, 38(14):53-58.
CHEN Peng, TU Yaqing, SHEN Yanlin, et al. Real-to-complex-transformation parameter estimation algorithm for damped real-value sinusoidal signal [J]. Journal of Vibration and Shock, 2020, 38(14):53-58.
[9]WEN H , ZHANG J, MENG Z, et al. Harmonic estimation using symmetrical interpolation FFT based on triangular self-convolution window[J]. IEEE Transactions on Industrial Informatics, 2017, 11(1):16-26.
[10]张鸿博,蔡晓峰,鲁改凤.基于双窗全相位FFT双谱线校正的电力谐波分析[J].仪器仪表学报,2015,36(12):2835-2841.
ZHANG Hongbo, CAI Xiaofeng, LU Gaifeng. Double-spectrum-line correction method based on double-window all-phase FFT for power harmonic analysis [J]. Chinese Journal of Scientific Instrument, 2015, 36(12): 2835-2841.
[11]DJUKANOVIC S, POPOVIC V. Efficient and accurate detection and frequency estimation of multiple sinusoids[J]. IEEE Access, 2019, 7:1118-1125.
[12]YE S L, ABOUTANIOS E. Rapid accurate frequency estimation of multiple resolved exponentials in noise[J]. Signal Processing, 2017, 132:29-39.
[13]YE S L, ABOUTANIOS E. An algorithm for the parameter estimation of multiple superimposed exponentials in noise[C]. IEEE International Conference on Acoustics. IEEE, 2015:3457-3461.
[14]AHMET S, KHALID Q. A fast method for estimating frequencies of multiple sinusoidals[J]. IEEE Signal Processing Letters, 2020, 27:386-390.
[15]ABOUTANIOS E, MULGREW B. Iterative frequency estimation by interpolation on fourier coefficients [J]. IEEE Transactions on Signal Processing, 2005, 53(4): 1237-1242.
[16]KAY S M. Fundamentals of statistical signal processing, volume III (paperback) [J]. Detection Theory, 1993, 37(4):465-466.
(上接第97页)
[17]VAN HOUT R, RINSKY V, GROBMAN Y G. Experimental study of a round jet impinging on a flat surface: flow field and vortex characteristics in the wall jet[J]. International Journal of Heat and Fluid Flow, 2018, 70: 41-58.
[18]张星星, 陈明, 许光祥, 等. 有限空间中三维壁面紊动射流流动特性试验研究[J]. 水科学进展, 2019, 30(1): 95-103.
ZHANG Xingxing, CHEN Ming, XU Guangxiang, et al. An experimental study on the flow characteristics of a three-dimensional turbulent wall jet in a limited space[J]. Advances in Water Science, 2019, 30(1): 95-103.
[19]ASHFORTH-FROST S, JAMBUNATHAN K, WHITNEY C F. Velocity and turbulence characteristics of a semiconfined orthogonally impinging slot jet[J]. Experimental Thermal and Fluid Science, 1997, 14(1): 60-67.
[20]ASHFORTHFROST S, JAMBUNATHAN K. Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet[J]. International Communications in Heat and Mass Transfer, 1996, 23(2):155-162.
[21]ZHANG J P, XU M Y, MI J C. Large eddy simulations of a circular orifice jet with and without a cross-sectional exit plate[J]. Chinese Physics B, 2014, 23(4): 44704.
[22]COOPER D, JACKSON D C, LAUNDER B E, et al. Impinging jet studies for turbulence model assessment—I. Flow-field experiments[J]. International Journal of Heat and Mass Transfer, 1993, 36(10): 2675-2684.
[23]KNOWLES K, MYSZKO M. Turbulence measurements in radial wall-jets[J]. Experimental Thermal and Fluid Science, 1998, 17(1/2): 71-78.
[24]XU Z, HANGAN H. Scale, boundary and inlet condition effects on impinging jets[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(12): 2383-2402.
[25]SODJAVI K, MONTAGN B, BRAGANA P, et al. PIV and electrodiffusion diagnostics of flow field, wall shear stress and mass transfer beneath three round submerged impinging jets[J]. Experimental Thermal and Fluid Science, 2016, 70: 417-436.
[26]SENGUPTA A, SARKAR P P. Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(3): 345-365.
[27]YADAV H, AGRAWAL A. Effect of vortical structures on velocity and turbulent fields in the near region of an impinging turbulent jet[J]. Physics of Fluids, 2018, 30(3): 035107.