Nonlinear stiffness behavior of non-contact multi-magnetic ring negative stiffness mechanism

WANG Yao, LI Zhanlong, LIU Qi, LIAN Jinyi, WANG Jianmei, QIN Yuan

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (15) : 41-47.

PDF(2072 KB)
PDF(2072 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (15) : 41-47.

Nonlinear stiffness behavior of non-contact multi-magnetic ring negative stiffness mechanism

  • WANG Yao1, LI Zhanlong1,2, LIU Qi1, LIAN Jinyi1, WANG Jianmei1,2, QIN Yuan1
Author information +
History +

Abstract

Due to low speed and heavy load of engineering vehicles, drivers and passengers are often exposed to vibrations with low frequency and large amplitude to cause low working efficiency and even serious vibration occupational diseases. The quasi-zero stiffness isolation system has characteristics of high static and low dynamic stiffness, it can effectively filter low-frequency vibration energy. A contact mechanism with negative stiffness can bring friction loss and other problems to cause the instability of mechanical morphology of negative stiffness mechanism. Now, a quasi-zero stiffness vibration isolation system is developed based on the parallel connection of non-contact negative stiffness (NCNS) mechanism and positive stiffness mechanism of pneumatic artificial muscle (PAM). Here, in order to find out the mechanism of stiffness behavior of the system, taking a multi-magnetic ring negative stiffness mechanism as the study object, the analytical model of its negative stiffness was established based on Biot-Savart’s law and Ampere’s law. The stiffness behavior characteristics of the mechanism under different parameters of magnetizing intensity, geometric parameters and magnetic field intensity were analyzed, and the verification tests were conducted. The results showed that axial magnetizing can obtain significant negative stiffness characteristics compared with radial magnetizing; increasing magnetic ring’s outer diameter, thickness and magnetic field intensity can improve the load-bearing capacity of the mechanism, but can’t change its negative stiffness range; increasing spacing between upper and lower magnetic rings can expand its negative stiffness range, but can’t change its load-bearing capacity; the correction determination coefficient between the calculation model and test results is 0.999 75, the calculation model meets accuracy requirements; the study results can provide a theoretical basis for further modeling, optimizing parameters and engineering application of quasi-zero stiffness vibration isolation systems.

 

Key words

non-contact / negative stiffness / permanent magnet ring / nonlinear mechanics / parameter analysis

Cite this article

Download Citations
WANG Yao, LI Zhanlong, LIU Qi, LIAN Jinyi, WANG Jianmei, QIN Yuan. Nonlinear stiffness behavior of non-contact multi-magnetic ring negative stiffness mechanism[J]. Journal of Vibration and Shock, 2021, 40(15): 41-47

References

[1]IBRAHIM R A. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound & Vibration, 2008, 314(3/4/5): 371-452.
[2]CARRELLA A, BRENNAN M J, KOVACIC I, et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2009, 332(45): 707-717.
[3]LIU X, HUANG X, HUA H. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beams as negative stiffness corrector[J]. Journal of Sound and Vibration, 2013, 332: 3359-3376.
[4]VALEEV A, ZOTOV A, KHARISOV S. Designing of compact low frequency vibration isolator with quasi-zero-stiffness[J]. Journal of Low Frequency Noise Vibration and Active control, 2015, 34(4):459-473.
[5]任旭东.空气弹簧准零刚度隔振器的特性分析及应用研究[D]. 北京:军事医学科学院,2017.
[6]徐道临, 张月英, 周加喜, 等. 一种准零刚度隔振器的特性分析与实验研究[J]. 振动与冲击, 2014, 33(11): 208-213.
XU Daolin, ZHANG Yueying, ZHOU Jiaxi, et al. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness[J]. Journal of Vibration and Shock, 2014, 33(11):208-213.
[7]蓝双,杨晓翔.新型准零刚度系统的设计、分析与仿真[J]. 机械强度, 2018, 40(3): 515-521.
LAN Shuang, YANG Xiaoxiang. Design, analysis and simulation of a novel quasi-zero stiffness vibration isolation system[J]. Journal of Mechanical Strength, 2018, 40(3): 515-521. 
[8]杜宁, 胡明勇, 毕勇, 等.一种车载设备的低频水平减振方法[J]. 振动与冲击, 2017, 36(7): 184-190.
DU Ning, HU Mingyong, BI Yong, et al. A low frequency horizontal vibration reduction method for a vehicle-borne photoelectric instrument[J]. Journal of Vibration and Shock, 2017, 36(7):184-190. 
[9]LIU Y, XU L, SONG C. Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping[J]. Archive of Applied Mechanics, 2019,89:1743-1759.
[10]张春辉, 曾泽璀, 张磊, 等.预紧式准零刚度隔冲器的隔冲性能研究[J]. 振动工程学报, 2019, 32(5): 767-777.
ZHANG Chunhui, ZENG Zecui, ZHANG Lei, et al. Research on the shock isolation performance of preload quasi-zero-stiffness isolator[J]. Journal of Vibration Engineering,2019,32(5): 767-777.
[11]ZHOU N, LIU K. A tunable high-static-low-dynamic stiffness vibration isolator[J]. Journal of Sound and Vibration, 2009, 329(9): 1254-1273.
[12]DONG Guangxu, ZHANG Xinong, LUO Yajun, et al. Analytical study of the low frequency multi-direction isolator with high-static-low-dynamic stiffness struts and spatial pendulum[J]. Mechanical Systems and Signal Processing, 2018, 110: 521-539.
[13]柴凯, 杨庆超, 朱石坚, 等. 矩形永磁铁的磁力计算及其应用[J].噪声与振动控制,2016,36(6):51-55.
CHAI Kai, YANG Qingchao, ZHU Shijian, et al. Magnetic force calculation of rectangular permanent magnets and its application[J]. Noise and Vibration Control, 2016, 36(6): 51-55.
[14]王迎春, 柴凯, 刘树勇, 等.永磁体型高静低动刚度隔振器试验研究[J]. 噪声与振动控制, 2019, 39(5): 223-230.
WANG Yingchun, CHAI Kai, LIU Shuyong, et al. Experimental study on the permanent magnets vibration isolators with high-static and low-dynamic stiffness[J]. Noise and Vibration Control, 2019, 39(5): 223-230.
[15]柴凯, 杨庆超, 朱石坚, 等.双环永磁铁型准零刚度隔振器的设计和分析[J]. 解放军理工大学学报(自然科学版),2017: 1-6.
CHAI Kai, YANG Qingchao, ZHU ShiJian, et al. Design and analysis of quasi-zero stiffness vibration isolator with bi-annular-shaped permanent magnet[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2017: 1-6. 
[16]李爽, 楼京俊, 杨庆超, 等.双环永磁体型高静低动刚度隔振器设计、建模与试验研究[J]. 振动工程学报, 2019, 32(4): 675-684.
LI Shuang, LOU Jingjun, YANG Qingchao, et al. Design and experiment of a vibration isolator using double-ring permanent magnets springs with negative stiffness[J]. Journal of Vibration Engineering, 2019, 32(4): 675-684. 
[17]严博, 马洪业, 韩瑞祥, 等.可用于大幅值激励的永磁式非线性隔振器[J]. 机械工程学报, 2019, 55(11): 169-175.
YAN Bo, MA Hongye, HAN Ruixiang, et al. Permanent magnets based nonlinear vibration isolator subjected to large amplitude acceleration excitations[J]. Journal of Mechanical Enrineering, 2019, 55(11):169-175. 
[18]YANG Tao, CAO Qingjie. Nonlinear transition dynamics in a time-delayed vibration isolator under combined harmonic and stochastic excitations[J]. Journal of Statistical Mechanics (Theory and Experiment), 2017, 31(4): 043202.
[19]苏智伟, 黄修长, 吴静波, 等. 含负刚度动力吸振的混合隔振系统振动冲击响应特性分析[J]. 中国舰船研究, 2019, 14(1): 59-65.
SU Zhiwei, HUANG Xiuchang, WU Jingbo, et al. Analysis on vibration and shock response of a hybrid isolation system using dynamic vibration absorber with negative stiffness[J]. Chinese Journal of Ship Research, 2019, 14(1): 59-65.
[20]KIM J, JEON Y, UM S, et al. A Novel passive quasi-zero stiffness isolator for ultra-precision measurement systems[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(9): 1573-1580.
[21]牛中奇. 电磁场理论基础[M]. 北京:电子工业出版社,2001: 57.
[22]冯慈璋, 马西奎. 工程电磁场导论[M]. 北京: 高等教育出版社, 2000: 92-93.
PDF(2072 KB)

465

Accesses

0

Citation

Detail

Sections
Recommended

/