A precise integration scheme for the non-uniform and completely non-stationary responses of viscoelastic energy dissipation structures

LI Chuangdi,WANG Bowen,CHANG Mingjing

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (16) : 100-110.

PDF(1895 KB)
PDF(1895 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (16) : 100-110.

A precise integration scheme for the non-uniform and completely non-stationary responses of viscoelastic energy dissipation structures

  • LI Chuangdi,WANG Bowen,CHANG Mingjing
Author information +
History +

Abstract

In order to establish a seismic analysis and design method of a viscoelastic energy dissipation structure and its protection system, a numerical analysis method of uniform and non-uniform, non-stationary and completely non-stationary random seismic response of a Maxwell damping energy dissipation system with braces was systematically studied in this paper.Firstly, the Maxwell damping energy dissipation system with braces was constructed, and the dynamic equation of the structure was established by the method of order expansion.Then, based on the efficient virtual excitation method, a general precise harmonic exponential polynomial precise integration scheme for uniform and non-uniform non-stationary and completely non-stationary responses was proposed, and eight classical uniform and non-uniform modulated non-stationary and completely non-stationary seismic responses were obtained.Finally, the variance of the uniform and non-uniform non-stationary, fully non-stationary seismic response of the energy dissipation structure system can be obtained.The results show that the method has the characteristics of wide application, high efficiency and strong engineering application.It provides a method for the analysis of seismic response of viscoelastic energy dissipation system.

Key words

viscoelastic damper / non-uniform and non-stationary / completely non-stationary / pseudo excitation method / precise integration scheme

Cite this article

Download Citations
LI Chuangdi,WANG Bowen,CHANG Mingjing. A precise integration scheme for the non-uniform and completely non-stationary responses of viscoelastic energy dissipation structures[J]. Journal of Vibration and Shock, 2021, 40(16): 100-110

References

[1]周云.黏弹性阻尼器减震结构设计[M].武汉: 武汉理工大学出版社, 2006.
[2]SOONG T T, DARGRUSH G F.Passive energy dissipation systems in structural engineering[M].Chichester: John Wiley and Ltd., 1997.
[3]CHRISTOPOULOS C, FILIATRAULT A.Principles of passive supplemental damping and seismic isolation[M]. Pavia: IUSS Press, 2006.
[4]RAS A, BOUMECHRA N.Seismic energy dissipation study of linear fluid viscous dampers in steel structure design[J].Alexandria Engineering Journal, 2016,55(3): 2821-2832.
[5]LONDONO J M, NEILD S A, WAGG D J.A noniterative design procedure for supplemental brace-damper systems in single-degree-of-freedom systems[J].Earthquake Engineering and Structural Dynamics, 2013,42(15): 2361-2367.
[6]汪志昊,陈政清.高层建筑结构中粘滞阻尼器的新型安装方式[J].世界地震工程, 2010,26(4): 135-140.
WANG Zhihao, CHEN Zhengqing.New installations of viscous dampers in high rise buildings[J].World Earthquake Engineering, 2010,26(4): 135-140.
[7]建筑抗震设计规范: GB 50011—2010[S].北京: 中国建筑工业出版社, 2010.
[8]建筑消能减震技术规程: JGJ 297—2013[S].北京: 中国建筑工业出版社, 2013.
[9]方同.工程随机振动[M].北京: 国防工业出版社, 1995.
[10]CONTE J P, PENG B F.Fully nonstationary analytical earthquake ground-motion model[J].Journal of Engineering Mechanics, 1997,123(1): 15-24.
[11]贝达特J S,皮尔索A G.随机数据分析方法[M].凌福根,译.北京:国防工业出版社,1976.
[12]金显龙.非平稳随机振动信号的瞬时功率谱分析[J].振动工程学报, 1990(3): 25-32.
JIN Xianlong.The instantaneous power spectrum analysis of nonstationary random vibration signals[J].Journal of Vibration Engineering, 1990(3): 25-32.
[13]PRIESTLEY M B.Power spectral analysis of non-stationary random process[J].Journal of Sound and Vibration, 1967,6(1): 86-97.
[14]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
[15]林家浩,张亚辉,赵岩.虚拟激励法在国内外工程界的应用回顾与展望[J].应用数学和力学, 2017,38(1): 1-31.
LIN Jiahao, ZHANG Yahui, ZHAO Yan.The pseudo-excitation method and its industrial applications in China and abroad[J].Applied Mathematics and Mechanics, 2017,38(1): 1-31.
[16]钟万勰.结构动力方程的精细时程积分法[J].大连理工大学报, 1994,34(2): 131-136.
ZHONG Wanxie.On precise time-integration method for structural dynamics[J].Journal of Dalian University of Technology, 1994,34(2): 131-136.
[17]高强,谭述君,钟万勰.精细积分方法研究综述[J].中国科学:技术科学, 2016,46(12): 1207-1218.
GAO Qiang, TAN Shujun, ZHONG Wanxie.A survey of the precise integration method[J].Scientia Sinica Technologica, 2016,46(12): 1207-1218.
[18]林家浩,沈为平, 威廉斯F W.受演变随机地震激励结构响应的精细逐步积分法[J].大连理工大学学报, 1995,35(5): 600-605.
LIN Jiahao, SHEN Weiping, WILLIAMS F W.High precise direct integration scheme for analusing structural non-statuinary random responses[J].Journal of Dalian University of Technology, 1995,35(5): 600-605.
[19]李创第,李暾,葛新广,等.一般线性黏弹性阻尼器耗能结构瞬态响应的非正交振型叠加精确解[J].工程力学, 2015,32(11): 140-149.
LI Chuangdi, LI Tun, GE Xinguang, et al.Accurate solution of non-orthogonal mode superposition for transient response of general linear viscoelastic damper energy dissipation structures[J].Engineering Mechanics, 2015,32(11): 140-149.
[20]李创第,柏大炼,邹万杰,等.设置支撑的广义Maxwell阻尼器系统基于非平稳巴斯金谱的地震响应分析[J].应用力学学报, 2018,35(5): 1050-1057.
LI Chuangdi, BAI Dalian, ZOU Wanjie, et al.Analytical method for non-stationary responses of dissipative system with brace-general Maxwell damper based on Baskin spectrum[J].Chinese Journal of Applied Mechanics, 2018,35(5): 1050-1057.
[21]李创第,李暾,尉宵腾,等.Maxwell阻尼耗能结构非平稳地震响应解析分析[J].振动与冲击, 2016,35(19): 172-180.
LI Chuangdi, LI Tun, WEI Xiaoteng, et al.Response analysis of energy disspation structures with Maxwell dampers under non-stationary seismic excitation[J].Journal of Vibration and Shock, 2016,35(19): 172-180.
[22]李创第,柏大炼,葛新广,等.隔震结构系统线性黏弹性液体阻尼器非平稳响应分析法[J].振动与冲击, 2019,38(2): 234-246.
LI Chuangdi, BAI Dalian, GE Xinguang, et al.Non stationary response analysis of isolated structures with linear viscoelastic liquid dampers[J].Journal of Vibration and Shock, 2019,38(2): 234-246.
[23]邹万杰,马媛,李创第,等.带支撑Maxwell阻尼器多层隔震结构的随机地震响应分析[J].振动与冲击, 2017,36(21): 213-219.
ZOU Wanjie, MA Yuan, LI Chuangdi, et al.Random seismic responses of multi-layer vibration isolation structures mounted with supporter attached Maxwell dampers[J].Journal of Vibration and Shock, 2017,36(21): 213-219.
[24]马媛.带支撑一般积分型黏弹性阻尼隔震结构的随机地震响应分析[D].柳州:广西科技大学,2017.
[25]马金凤,邹万杰,李创第,等.带支撑Maxwell阻尼器耗能隔震结构的随机风振响应分析[J].应用力学学报, 2019,36(1): 53-59.
MA Jinfeng, ZOU Wanjie, LI Chuangdi, et al.Random wind-induced response analysis of a Maxwell damped energy isolation structure with braces[J].Chinese Journal of Applied Mechanics, 2019,36(1): 53-59.
[26]DING Z, LI L, HU Y J.A modified precise integration method for transient dynamic analysis in structural systems with multiple damping models[J].Mechanical Systems and Signal Processing, 2018,98: 618-633.
[27]DING Z, LI L, HU Y J, et al.State-space based time integration method for structural systems involving multiple nonviscous damping models[J].Computers and Structures, 2016,171: 31-45.
[28]LI L, HU Y J.State-space method for viscoelastic systems involving general damping model[J].AIAA Journal, 2016,54(10): 3290-3295.
[29]SHINOZUKA M, SATO Y.Simulation of nonstationary random process[J].Journal of the Engineering Mechanics Division, 1967,93(1): 11-40.
[30]SPANOS P T D, SOLOMOS G P.Markov approximation to transient vibration[J].Journal of Engineering Mechanics, 1983,109(4): 1134-1150.
 
PDF(1895 KB)

467

Accesses

0

Citation

Detail

Sections
Recommended

/