Analysis of bilateral symmetrical vibro-impact of a fractional-order linear single-degree-of-freedom oscillator

LIU Ruyu,NIU Jiangchuan,SHEN Yongjun,YANG Shaopu

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (16) : 20-28.

PDF(1565 KB)
PDF(1565 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (16) : 20-28.

Analysis of bilateral symmetrical vibro-impact of a fractional-order linear single-degree-of-freedom oscillator

  • LIU Ruyu1,NIU Jiangchuan1,2,SHEN Yongjun1,2,YANG Shaopu1,2
Author information +
History +

Abstract

Based on the two-sided rigid vibro-impact model of a single-degree-of-freedom oscillator with fractional-order derivative, the stability and bifurcation behavior of the bilateral symmetrical vibro-impact system under harmonic excitation were studied.The average method was used to obtain the equivalent stiffness and damping of the fractional order linear system, and then the steady-state solution of the vibro-impact system was obtained.And the iterative method was used to obtain more accurate transient natural frequency, so as to obtain the transient solution of the vibro-impact system.On this basis, the approximate analytical solution of the bilateral symmetrical vibro-impact system was acquired.According to the approximate analytical solution, the existence conditions of symmetric n-1-1 periodic motion were analyzed, and the stability of n-1-1 periodic motion was studied by Poincaré mapping.The bifurcation behaviors of the system were further analyzed with the change of the external excitation frequency, fractional order, and gap.The results show that there are grazing bifurcation, pitchfork bifurcation, period doubling bifurcation, and chaotic motion in the system.

Key words

vibro-impact / fractional-order derivative / stability / bifurcation

Cite this article

Download Citations
LIU Ruyu,NIU Jiangchuan,SHEN Yongjun,YANG Shaopu. Analysis of bilateral symmetrical vibro-impact of a fractional-order linear single-degree-of-freedom oscillator[J]. Journal of Vibration and Shock, 2021, 40(16): 20-28

References

[1]毛君,张瑜,刘占胜,等.间隙条件下刨煤机刨头接触碰撞动态特性研究[J].振动与冲击,2015,34(19): 224-229.
MAO Jun, ZHANG Yu, LIU Zhansheng, et al.Dynamic characteristics of plough head under contact-imact with clearances[J].Journal of Vibration and Shock, 2015,34(19): 224-229.
[2]张敏,刘敬喜,赵耀,等.楔形物垂向撞击船体板的简化解析法研究[J].振动与冲击,2019,38(24): 81-84.
ZHANG Min, LIU Jingxi, ZHAO Yao, et al.A simplified analytical method for ship plating subjected to lateral impact by a wedge indenter[J].Journal of Vibration and Shock, 2019,38(24): 81-84.
[3]吕小红,张淑华.单自由度碰撞振动系统的稳定性分析[J].兰州交通大学学报,2006,25(6): 101-104.
L Xiaohong, ZHANG Shuhua.Stability analysis of a one-degree-of-freedom vibro-impact system[J].Journal of Lanzhou Jiaotong University, 2006,25(6): 101-104.
[4]张继业,杨翊仁,曾京.单自由度自治系统的碰撞振动分析[J].振动与冲击,1998,17(3): 47-51.
ZHANG Jiye, YANG Yiren, ZENG Jing.Vibro-impact analysis of an autonomous system with single degree of freedom[J].Journal of Vibration and Shock, 1998,17(3): 47-51.
[5]罗冠炜,谢建华,孙训方.单自由度塑性碰撞振动系统的周期运动及其分叉特点[J].中国机械工程,2001,12(11): 1297-1300.
LUO Guanwei, XIE Jianhua, SUN Xunfang.Periodic motions and bifurcation characteristics of a single-degree-of-freedom vibratory system with perfectly plastic impacts[J].China Mechanical Engineering, 2001,12(11): 1297-1300.
[6]冯进钤,徐伟,牛玉俊.Duffing单边碰撞系统的颤振分岔[J].物理学报,2010,59(1): 157-163.
FENG Jinqian, XU Wei, NIU Yujun.Chattering bifurcations in a Duffing unilateral vibro-impact system[J].Acta Physica Sinica, 2010,59(1): 157-163.
[7]冯进钤,徐伟.Duffing单边碰撞系统的混沌鞍合并激变[J].物理学报,2011,60(8): 59-64.
FENG Jinqian, XU Wei.Merging crisis of chaotic saddle in a Duffing unilateral vibro-impact system[J].Acta Physica Sinica, 2011,60(8): 59-64.
[8]李得洋,丁旺才,丁杰,等.单自由度含对称约束碰振系统周期运动的转迁规律分析[J].振动与冲击,2019,38(22): 52-59.
LI Deyang, DING Wangcai, DING Jie, et al.Transition of periodic motions of a 1DOF vibro-impact system with symmetrical constraints[J].Journal of Vibration and Shock, 2019,38(22): 52-59.
[9]乐源,谢建华.一类双面碰撞振子的对称性尖点分岔与混沌[J].应用数学和力学,2007,28(8): 991-998
YUE Yuan, XIE Jianhua.Symmetry, cusp bifurcation and chaos of an impact oscillator between two rigid sides[J].Applied Mathematics and Mechanics, 2007,28(8): 991-998.
[10]ANDREAUS U, DE ANGELIS M.Experimental and numerical dynamic response of a SDOF vibro-impact system with double gaps and bumpers under harmonic excitation[J].International Journal of Dynamics & Control, 2019,7: 1278-1292.
[11]KUMAR P, NARAYANAN S, GUPTA S.Bifurcation analysis of a stochastically excited vibro-impact Duffing-van der Pol oscillator with bilateral rigid barriers[J].International Journal of Mechanical Sciences, 2017,127: 103-117.
[12]REBOUCAS G F D S, SANTOS I F, THOMSEN J J.Unilateral vibro-impact systems-experimental observations against theoretical predictions based on the coefficient of restitution[J].Journal of Sound and Vibration, 2019,440: 346-371.
[13]XIE X F, LI J L, LIU D, et al.Transient response of nonlinear vibro-impact system under Gaussian white noise excitation through complex fractional moments[J].Acta Mechanica, 2016,228(3): 1-11.
[14]LI C.Stochastic response of a vibro-impact system with variable massc[J].Physica A: Statistical Mechanics and its Applications, 2019,516: 151-160.
[15]RIGAUD E, PERRET-LIAUDET J.Investigation of gear rattle noise including visualization of vibro-impact regimes[J].Journal of Sound and Vibration, 2020,467: 115026.
[16]REBOUCAS G F D S, SANTOS I F, THOMSEN J J.Validation of vibro-impact force models by numerical simulation, perturbation methods and experiments[J].Journal of Sound and Vibration, 2018,413: 291-307.
[17]CHEN L C, QIAN J M, ZHU H S, et al.The closed-form stationary probability distribution of the stochastically excited vibro-impact oscillators[J].Journal of Sound and Vibration, 2019,439: 260-270.
[18]NGUYEN V D, DUONG T H, CHU N H, et al.The effect of inertial mass and excitation frequency on a Duffing vibro-impact drifting system[J].International Journal of Mechanical Sciences, 2017,124/125: 9-21.
[19]YAN Y, LIU Y, LIAO M L.A comparative study of the vibro-impact capsule systems with one-sided and two-sided constraints[J].Nonlinear Dynamics, 2017,89: 1063-1087.
[20]XU W, HUANG D M, XIE W X.Multi-valued responses and dynamic stability of a nonlinear vibro-impact system with a unilateral non-zero offset barrier[J].Chinese Physics B, 2016,25(3): 030502.
[21]XU W, FENG J Q, RONG H W.Melnikov’s method for a general nonlinear vibro-impact oscillator[J].Nonlinear Analysis, 2009, 71(1/2): 418-426.
[22]廖少锴,张卫.非线性分数阶微分振子的动力学研究[J].振动工程学报,2007,20(5): 459-467.
LIAO Shaokai, ZHANG Wei.Dynamics of nonlinear fractional differential oscillator[J].Journal of Vibration Engineering, 2007,20(5): 459-467.
[23]杨建华,朱华.不同周期信号激励下分数阶线性系统的响应特性分析[J].物理学报,2013,62(2): 024501.
YANG Jianhua, ZHU Hua.The response property of one kind of factional-order linear system excited by different periodical signals[J].Acta Physica Sinica, 2013,62(2): 024501.
[24]黄灿,段俊生.线性分数阶强迫振动的稳态响应[J].应用数学与计算数学学报,2015,29(2): 240-247.
HUANG Can, DUAN Junsheng.Steady-state response of linear fractional forced vibration[J].Communication on Applied Mathematics and Computation, 2015,29(2): 240-247.
[25]银花,陈宁,赵尘,等.分数阶导数型粘弹性结构动力学方程的数值算法[J].南京林业大学学报(自然科学版),2010,34(2): 115-118.
YIN Hua, CHEN Ning, ZHAO Chen, et al.A numerical algorithm for the dynamics equation of the fractional derivative viscoelasticity structure[J].Journal of Nanjing Forestry University (Natural Sciences Edition), 2010,34(2): 115-118.
[26]王学彬.拉普拉斯变换方法解分数阶微分方程[J].西南师范大学学报(自然科学版),2016,41(7): 7-12.
WANG Xuebin.On Laplace transform method for solving fractional differential equations[J].Journal of Southwest China Normal University(Natural Science Edition) , 2016,41(7): 7-12.
[27]闫启方,陈哲,刘林超.分数阶Kelvin粘弹性材料的力学特性研究[J].机械科学与技术,2009,28(7): 917-920.
YAN Qifang, CHEN Zhe, LIU Linchao.Mechanical properties of viscoelastic materials described by fractional Kelvin modal[J].Mechanical Science and Technology for Aerospace Engineering, 2009,28(7): 917-920.
[28]刘艳芹.一类分数阶非线性振子方程的特性研究[J].计算机工程与应用,2012,48(16): 30-32.
LIU Yanqin.Study on properties of fractional nonlinear oscillator equations[J].Computer Engineering and Applications, 2012,48(16): 30-32.
[29]牛江川,申永军,杨绍普,等.分数阶PID控制对单自由度线性振子的影响[J].振动与冲击,2016,35(24): 88-95.
NIU Jiangchuan, SHEN Yongjun, YANG Shaopu, et al.Effect of fractional-order PID controller on the dynamical response of linear single degree-of-freedom oscillator[J].Journal of Vibration and Shock, 2016,35(24): 88-95.
[30]YANG Y G, XU W, YANG G D.Bifurcation analysis of a noisy vibro-impact oscillator with two kinds of fractional derivative elements[J].Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018,28: 043106.
[31]PETRAS I.Fractional-order nonlinear systems[M].Beijing: Higher Education Press, 2011.
[32]NIU J C, LIU R Y, SHEN Y J, et al.Stability and bifurcation analysis of single-degree-of-freedom linear vibro-impact system with fractional-order derivative[J].Chaos Solitons Fractals, 2019,123: 14-23.
[33]MAKRIS N, CONSTANTINOU M C.Fractional-derivative maxwell model for viscous dampers[J].Journal of Structural Engineering, 1991,117(9): 2708-2724.
PDF(1565 KB)

527

Accesses

0

Citation

Detail

Sections
Recommended

/